Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 518-533, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38365203

RESUMEN

Shoot branching is an important biological trait affecting alfalfa (Medicago sativa L.) production, but its development is complicated and the mechanism is not fully clear. In the present study, pectin acetylesterase 12 (MsPAE12) and NAM/ATAF/CUC-domain transcription factor gene (MsNAC73) were isolated from alfalfa. MsPAE12 was highly expressed in shoot apexes, and MsNAC73 was found to be a key transcriptional repressor of MsPAE12 by directly binding to salicylic acid (SA) and jasmonic acid (JA) elements in the MsPAE12 promoter. The biological functions of MsPAE12 and MsNAC73 were studied through overexpression (OE) and down-expression (RNAi) of the 2 genes in alfalfa. The numbers of shoot branches increased in MsPAE12-OE lines but decreased in MsPAE12-RNAi and MsNAC73-OE plants, which was negatively related to their indole-3-acetic acid (IAA) accumulation in shoot apexes. Furthermore, the contents of acetic acid (AA) in shoot apexes decreased in MsPAE12-OE plants but increased in MsPAE12-RNAi and MsNAC73-OE plants. The changes of AA contents were positively related to the expression of TRYPTOPHAN AMINOTRANSFERASE 1 (MsTAA1), TRYPTOPHAN AMINOTRANSFERASE-RELATED 2 (MsTAR2), and YUCCA flavin monooxygenase (MsYUCC4) and the contents of tryptophan (Trp), indole-3-pyruvic acid (IPA), and IAA in shoot apexes of MsPAE12-OE, MsPAE12-RNAi, and MsNAC73-OE plants. Exogenous application of AA to wild type (WT) and MsPAE12-OE plants increased Trp, IPA, and IAA contents and decreased branch number. Exogenous IAA suppressed shoot branching in MsPAE12-OE plants, but exogenous IAA inhibitors increased shoot branching in MsPAE12-RNAi plants. These results indicate that the MsNAC73-MsPAE12 module regulates auxin-modulated shoot branching via affecting AA accumulation in shoot apexes of alfalfa.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Medicago sativa , Proteínas de Plantas , Brotes de la Planta , Ácidos Indolacéticos/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Medicago sativa/crecimiento & desarrollo , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Acético/metabolismo , Plantas Modificadas Genéticamente , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Regiones Promotoras Genéticas/genética , Ácido Salicílico/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología
2.
Plant Biotechnol J ; 22(5): 1132-1145, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38048288

RESUMEN

Dehydrins and aquaporins play crucial roles in plant growth and stress responses by acting as protector and controlling water transport across membranes, respectively. MsDHN1 (dehydrin) and MsPIP2;1 (aquaporin) were demonstrated to interact with a membrane-anchored MYB protein, MsmMYB (as mMYB) in plasma membrane under normal condition. MsDHN1, MsPIP2;1 and MsDHN1-MsPIP2;1 positively regulated alfalfa tolerance to water deficiency. Water deficiency caused phosphorylation of MsPIP2;1 at Ser 272, which led to release C terminus of mMYB (mMYBΔ83) from plasma membrane and translocate to nucleus, where C terminus of MsDHN1 interacted with mMYBΔ83, and promoted mMYBΔ83 transcriptional activity in response to water deficiency. Overexpression of mMYB and mMYBΔ83 down-regulated the expression of MsCESA3, but up-regulated MsCESA7 expression by directly binding to their promoters, and resulted in high drought tolerance in transgenic hairy roots. These results indicate that the MsDHN1-MsPIP2;1-MsMYB module serves as a key regulator in alfalfa against drought stress.


Asunto(s)
Acuaporinas , Medicago sativa , Medicago sativa/genética , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Agua/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Estrés Fisiológico/genética
3.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446297

RESUMEN

Raffinose synthase (Rafs) is an important enzyme in the synthesis pathway of raffinose from sucrose and galactinol in higher plants and is involved in the regulation of seed development and plant responses to abiotic stresses. In this study, we analyzed the Rafs families and profiled their alternative splicing patterns at the genome-wide scale from 10 grass species representing crops and grasses. A total of 73 Rafs genes were identified from grass species such as rice, maize, foxtail millet, and switchgrass. These Rafs genes were assigned to six groups based the phylogenetic analysis. We compared the gene structures, protein domains, and expression patterns of Rafs genes, and also unraveled the alternative transcripts of them. In addition, different conserved sequences were observed at these putative splice sites among grass species. The subcellular localization of PvRafs5 suggested that the Rafs gene was expressed in the cytoplasm or cell membrane. Our findings provide comprehensive knowledge of the Rafs families in terms of genes and proteins, which will facilitate further functional characterization in grass species in response to abiotic stress.


Asunto(s)
Empalme Alternativo , Setaria (Planta) , Humanos , Filogenia , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Estrés Fisiológico/genética , Setaria (Planta)/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Physiol Plant ; 174(6): e13817, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36344445

RESUMEN

Soil salinity has become one of the major factors that threaten tall fescue growth and turf quality. Plants recruit diverse microorganisms in the rhizosphere to cope with salinity stress. In this study, 15 plant growth-promoting rhizobacteria (PGPR) were isolated from the salt-treated rhizosphere of tall fescue and were annotated to 10 genera, including Agrobacterium, Fictibacillus, Rhizobium, Bhargavaea, Microbacterium, Paenarthrobacter, Pseudarthrobacter, Bacillus, Halomonas, and Paracoccus. All strains could produce indole-3-acetic acid (IAA). Additionally, eight strains exhibited the ability to solubilize phosphate and potassium. Most strains could grow on the medium containing 600 mM NaCl, such as Bacillus zanthoxyli and Bacillus altitudinis. Furthermore, Bacillus zanthoxyli and Bacillus altitudinis were inoculated with tall fescue seeds and seedlings to determine their growth-promoting effect. The results showed that Bacillus altitudinis and mixed culture significantly increased the germination rate of tall fescue seeds. Bacillus zanthoxyli can significantly increase the tillers number and leaf width of seedlings under salt conditions. Through the synergistic effect of FaSOS1, FaHKT1, and FaHAK1 genes, Bacillus zanthoxyli helps to expel the excess Na+ from aboveground parts and absorb more K+ in roots to maintain ion homeostasis in tall fescue. Unexpectedly, we found that Bacillus altitudinis displayed an inapparent growth-promoting effect on seedlings under salt stress. Interestingly, the mixed culture of the two strains was also able to alleviate, to some extent, the effects of salt stress on tall fescue. This study provides a preliminary understanding of tall fescue rhizobacteria and highlights the role of Bacillus zanthoxyli in tall fescue growth and salt tolerance.


Asunto(s)
Bacillus , Festuca , Lolium , Rizosfera , Estrés Salino , Desarrollo de la Planta , Plantones , Raíces de Plantas
5.
J Integr Plant Biol ; 63(10): 1753-1774, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34288433

RESUMEN

The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well-watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low-complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype-specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.


Asunto(s)
Ecotipo , Microbiota , Osmorregulación , Panicum/microbiología , Raíces de Plantas/microbiología , Biocombustibles , Sequías , Panicum/fisiología , Microbiología del Suelo
6.
Plant Physiol Biochem ; 170: 133-145, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883320

RESUMEN

Hydrogen sulfide (H2S), as a gaseous messenger molecule, plays critical roles in signal transduction and biological modulation. In the present study, the roles of H2S in regulating chlorophyll (Chl) and carotenoid (Car) contents to improve photosynthesis in tall fescue were investigated under low-light (LL) stress. Compared to control conditions, LL stress significantly reduced total biomass, net photosynthetic rate (Pn), maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), and the contents of Chl and Car. Under exogenous sodium hydrosulfide (NaHS, H2S donor) application, these parameters were enhanced, ultimately increasing photosynthesis. Moreover, exogenous H2S up-regulated the expression of chlorophyll biosynthesis genes while down-regulated chlorophyll degradation genes, resulting in increases in chlorophyll precursors. Components of carotenoids and expression of genes encoding biosynthesis and degradation enzymes varied similarly. Additionally, application exogenous H2S up-regulated expression of FaDES1 and FaDCD. Thus, it enhanced L-cysteine desulfhydrase 1 (DES1, EC 4.4.1.1) and D-cysteine desulfhydrase (DCD, EC 4.4.1.15) activities leading to elevated endogenous H2S. However, these responses were reversed by treatment with hypotaurine (HT, H2S scavenger). These results suggested that H2S is involved in regulating photosynthesis to improve LL tolerance via modulating Chl and Car metabolisms in tall fescue.


Asunto(s)
Festuca , Sulfuro de Hidrógeno , Carotenoides , Clorofila , Fotosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA