Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360609

RESUMEN

Catalytic bioparts are fundamental to the design, construction and optimization of biological systems for specific metabolic pathways. However, the functional characterization information of these bioparts is frequently dispersed across multiple databases and literature sources, posing significant challenges to the effective design and optimization of specific chassis or cell factories. We developed the Registry and Database of Bioparts for Synthetic Biology (RDBSB), a comprehensive resource encompassing 83 193 curated catalytic bioparts with experimental evidences. RDBSB offers their detailed qualitative and quantitative catalytic information, including critical parameters such as activities, substrates, optimal pH and temperature, and chassis specificity. The platform features an interactive search engine, visualization tools and analysis utilities such as biopart finder, structure prediction and pathway design tools. Additionally, RDBSB promotes community engagement through a catalytic bioparts submission system to facilitate rapid data sharing and utilization. To date, RDBSB has supported the contribution of >1000 catalytic bioparts. We anticipate that the database will significantly enhance the resources available for pathway design in synthetic biology and serve essential tools for researchers. RDBSB is freely available at https://www.biosino.org/rdbsb/.

2.
Small ; 20(6): e2305900, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37786266

RESUMEN

Designing photocatalysts with efficient charge transport and abundant active sites for photocatalytic CO2 reduction in pure water is considered a potential approach. Herein, a nickel-phthalocyanine containing Ni-N4 active sites-based conjugated microporous polymer (NiPc-CMP), offering highly dispersed metal active sites, satisfactory CO2 adsorption capability, and excellent light harvesting properties, is engineered as a photocatalyst. By virtue of the covalently bonded bridge, an atomic-scale interface between the NiPc-CMP/Bi2 WO6 Z-scheme heterojunction with strong chemical interactions is obtained. The interface creates directional charge transport highways and retains a high redox potential, thereby enhancing the photoexcited charge carrier separation and photocatalytic efficiency. Consequently, the optimal NiPc-CMP/Bi2 WO6 (NCB-3) achieves efficient photocatalytic CO2 reduction performance in pure water under visible-light irradiation without any sacrificial agent or photosensitizer, affording a CO generation rate of 325.9 µmol g-1 with CO selectivity of 93% in 8 h, outperforming those of Bi2 WO6 and NiPc-CMP, individually. Experimental and theoretical calculations reveal the promotion of interfacial photoinduced electron separation and the role of Ni-N4 active sites in photocatalytic reactions. This study presents a high-performance CMP-based Z-scheme heterojunction with an effective interfacial charge-transfer route and rich metal active sites for photocatalytic CO2 conversion.

3.
Angew Chem Int Ed Engl ; : e202409925, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225195

RESUMEN

Intramolecular charge separation driving force and linkage chemistry between building blocks are critical factors for enhancing the photocatalytic performance of metal-covalent organic frameworks (MCOF) based photocatalyst. However, robust achieving both simultaneously has yet to be challenging despite ongoing efforts. Here we develop a fully  π-conjugated vinylene-linked multivariate donor-π-acceptor MCOF (D-π-A, termed UJN-1)by integrating integrating benzyl cyanides linker with multiple functional building blocks of electron-rich triphenylamine and electron-deficient copper-cyclic trinuclear units (Cu-CTUs) moieties, featuring with strong intramolecular charge separation driving force, extended conjugation degree of skeleton, and abundant active sites. The incorporation of Cu-CTUs acceptor with electron-withdrawing ability and concomitantly giant charge separation driving force can efficiently accelerate the photogenerated electrons transfer from triphenylamine to Cu-CTUs, revealing by experiments and theoretical calculations. Benefiting from the synergistically effect of D-π-A configuration and vinylene linkage, the highly-efficient charge spatial separation is achieved. Consequently, UJN-1 exhibits an excellent CO formation rate of 114.8 µmol g-1 in 4 h without any co-catalysts or sacrificial reagents under visible light, outperforming those analogous MCOFs with imine-linked (UJN-2, 28.9 µmol g-1) and vinylene-linked COF without Cu-CTU active sites (UJN-3, 50.0 µmol g-1), emphasizing the role of charge separation driving force and linkage chemistry in designing novel COFs-based photocatalyst.

4.
Anal Chem ; 94(23): 8327-8334, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35635766

RESUMEN

Herein, a hand-drawing paper-based bipolar electrode (BPE) electrochemiluminescence (ECL) platform for M.SssI methyltransferase (M.SssI MTase) assay was proposed via employing high electrocatalytic Pt@CeO2 as an ECL co-reaction accelerator and pencil-drawing graphite electric circuits as wires and electrodes. Notably, the introduction of pencil-drawing trace not only simplified the manufacturing process but also reduced the cost and saved fabricating time. Meanwhile, Pt@CeO2 with good electrocatalytic activity and satisfactory chemical stability was used at the anode of the closed BPE-ECL device to accelerate the oxidation rate of uric acid. Due to the balanced charges of the bipolar electrode, the ECL response of the MnS: CdS@ZnS/S2O82- system emitted on the cathode was enhanced. In situ growth of gold nanoparticles in the two electrode areas was convenient for DNA immobilization. With the above points in mind, the specific DNA double strands functionalized via Pt@CeO2 were employed to identify M.SssI MTase. The unmethylated DNA double strands were cut by HpaII endonuclease, resulting in the quenching of the ECL signal. Under the optimal conditions, sensitive detection of M.SssI MTase in a wide linear range of 0.01-100 U·mL-1 with a satisfactory detection limit of 0.008 U·mL-1 was realized. The reliable and versatile BPE-ECL tool for the determination of M.SssI MTase with easy-to-operate pencil-drawing traces and independent solution systems provides a new opportunity to develop paper-based devices applied in early disease diagnosis and pathogenesis research.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , ADN , ADN-Citosina Metilasas , Técnicas Electroquímicas/métodos , Electrodos , Oro , Mediciones Luminiscentes/métodos , Metiltransferasas
5.
Anal Chem ; 94(3): 1705-1712, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35014798

RESUMEN

Currently, developing versatile, easy-to-operate, and effective signal amplification strategies hold great promise in photoelectrochemical (PEC) biosensing. Herein, an ultrasensitive polyvinylpyrrolidone-treated In2S3/WO3 (In2S3-P/WO3)-functionalized paper-based PEC sensor was established for sensing ochratoxin A (OTA) based on a target-driven self-feedback (TDSF) mechanism enabled by a dual cycling tactic of PEC chemical-chemical (PECCC) redox and exonuclease III (Exo III)-assisted complementary DNA. The In2S3-P/WO3 heterojunction structure with 3D open-structure and regulable topology was initially in situ grown on Au nanoparticle-functionalized cellulose paper, which was served as a universal signal transducer to directly record photocurrent signals without complicated electrode modification, endowing the paper chip with admirable anti-interference ability and unexceptionable photoelectric conversion efficiency. With the assistance of Exo III-assisted cycling process, a trace amount of OTA could trigger substantial signal reporter ascorbic acid (AA) generated by the enzymatic catalysis of alkaline phosphatase, which could effectively provoke the PECCC redox cycling among the tris(2-carboxyethyl)phosphine acid, AA, and ferrocenecarboxylic at the In2S3-P/WO3 photoelectrode, initiating TDSF signal amplification. Based on the TDSF process induced by the Exo III-assisted recycling and PECCC redox cycling strategy, the developed paper-based PEC biosensor realized ultrasensitive determination of OTA with persuasive selectivity, high stability, and excellent reproducibility. It is believed that the proposed paper-based PEC sensing platform exhibited enormous potential for the detection of other targets in bioanalysis and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Electroquímicas , Retroalimentación , Oro , Límite de Detección , Nanopartículas del Metal/química , Ocratoxinas , Reproducibilidad de los Resultados
6.
Neurobiol Dis ; 152: 105290, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33556540

RESUMEN

In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids. Accumulating evidence demonstrates metabolic reprogramming acts as a key driver of microglial immune response. For instance, microglia in pro-inflammatory states preferentially use glycolysis for energy production, whereas, cells in anti-inflammatory states are mainly powered by oxidative phosphorylation and fatty acid oxidation. In this review, we summarize recent findings regarding microglial metabolic pathways under physiological and pathological circumtances. We will then discuss how metabolic reprogramming can orchestrate microglial response to a variety of central nervous system pathologies. Finally, we highlight how manipulating metabolic pathways can reprogram microglia towards beneficial functions, and illustrate the therapeutic potential for inflammation-related neurological diseases.


Asunto(s)
Adaptación Fisiológica/fisiología , Reprogramación Celular/fisiología , Sistema Nervioso Central/metabolismo , Microglía/metabolismo , Animales , Sistema Nervioso Central/inmunología , Humanos , Metaboloma , Microglía/inmunología , Fenotipo
7.
J Neuroinflammation ; 18(1): 201, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526069

RESUMEN

BACKGROUND AND PURPOSE: Neuromyelitis optica spectrum disorder (NMOSD) is mainly an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. Systemic and local inflammatory responses play a key role in the pathophysiology of NMOSD. However, the role of the crucial immunomodulators CD4+CD25+ forkhead box P3+ (Foxp3) regulatory T cells (Tregs) has not been investigated in NMOSD. METHODS: Twenty-five patients with anti-AQP4-postive NMOSD undergoing an attack and 21 healthy controls (HCs) were enrolled. Frequencies of T cell subsets and Tregs in the peripheral blood were assessed by flow cytometry. Additionally, a model of NMOSD using purified immunoglobulin G from anti-AQP4-antibodies-positive patients with NMOSD and human complement injected into brain of female adult C57BL/6J mice was established. Infiltrated Tregs into NMOSD mouse brain lesions were analyzed by flow cytometry, histological sections, and real-time quantitative Polymerase Chain Reaction. Astrocyte loss, demyelination, and inflammatory response were also evaluated in our NMOSD mouse model. Finally, we examined the effects of both depletion and adoptive transfer of Tregs. RESULTS: The percentage of Tregs, especially naïve Tregs, among total T cells in peripheral blood was significantly decreased in NMOSD patients at acute stage when compared to HCs. Within our animal model, the number and proportion of Tregs among CD4+ T cells were increased in the lesion of mice with NMOSD. Depletion of Tregs profoundly enhanced astrocyte loss and demyelination in these mice, while adoptive transfer of Tregs attenuated brain damage. Mechanistically, the absence of Tregs induced more macrophage infiltration, microglial activation, and T cells invasion, and modulated macrophages/microglia toward a classical activation phenotype, releasing more chemokines and pro-inflammatory cytokines. In contrast, Tregs transfer ameliorated immune cell infiltration in NMOSD mice, including macrophages, neutrophils, and T cells, and skewed macrophages and microglia towards an alternative activation phenotype, thereby decreasing the level of chemokines and pro-inflammatory cytokines. CONCLUSION: Tregs may be key immunomodulators ameliorating brain damage via dampening inflammatory response after NMOSD.


Asunto(s)
Neuromielitis Óptica , Animales , Acuaporina 4 , Autoanticuerpos , Encéfalo/patología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/patología
8.
Cell Mol Neurobiol ; 41(2): 353-364, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32342246

RESUMEN

Since microglia-associated neuroinflammation plays a pivotal role in the progression of white matter diseases, modulating microglial activation has been suggested as a potential therapeutic strategy. Here, we investigated the anti-inflammatory effects of fingolimod (FTY720) on microglia and analyzed the crosstalk between microglia autophagy and neuroinflammation. Lipopolysaccharide (LPS)-induced primary cultured microglia model was established. Microglial phenotypes were assessed by Western blot, quantitative real-time polymerase chain reaction (RT-PCR) and flow cytometry. Autophagy was evaluated by immunofluorescence, MDC staining and Western blot. Rapamycin was used to investigate the role of autophagic process in regulating microglial phenotypes. The signaling markers were screened by RT-PCR and Western blot. FTY720 shifted microglial phenotype from pro-inflammatory state to anti-inflammatory state and inhibited microglial autophagy under lipopolysaccharide (LPS) treatment. Rapamycin reversed the effect of FTY720 on phenotype transformation of microglia. The results of mechanism studies have shown that FTY720 notably repressed LPS-induced STAT1 activity, which was reactivated by rapamycin. Our research suggested that FTY720 could significantly transform pro-inflammatory microglia into anti-inflammatory microglia by suppressing autophagy via STAT1.


Asunto(s)
Antiinflamatorios/farmacología , Autofagia , Clorhidrato de Fingolimod/farmacología , Microglía/metabolismo , Microglía/patología , Factor de Transcripción STAT1/metabolismo , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Inflamación/patología , Lipopolisacáridos , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Modelos Biológicos , Fenotipo , Transducción de Señal/efectos de los fármacos
9.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638904

RESUMEN

Group A Streptococcus (GAS) causes invasive human diseases with the cytokine storm. Interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis is known to drive TH2 response, while its effect on GAS infection is unclear. We used an air pouch model to examine the effect of the IL-33/ST2 axis on GAS-induced necrotizing fasciitis. GAS infection induced IL-33 expression in wild-type (WT) C57BL/6 mice, whereas the IL-33- and ST2-knockout mice had higher mortality rates, more severe skin lesions and higher bacterial loads in the air pouches than those of WT mice after infection. Surveys of infiltrating cells in the air pouch of GAS-infected mice at the early stage found that the number and cell viability of infiltrating cells in both gene knockout mice were lower than those of WT mice. The predominant effector cells in GAS-infected air pouches were neutrophils. Absence of the IL-33/ST2 axis enhanced the expression of inflammatory cytokines, but not TH1 or TH2 cytokines, in the air pouch after infection. Using in vitro assays, we found that the IL-33/ST2 axis not only enhanced neutrophil migration but also strengthened the bactericidal activity of both sera and neutrophils. These results suggest that the IL-33/ST2 axis provided the protective effect on GAS infection through enhancing the innate immunity.


Asunto(s)
Inmunidad Innata/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Animales , Movimiento Celular/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/microbiología , Transducción de Señal/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología
10.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769046

RESUMEN

Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 µg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.


Asunto(s)
Antibacterianos/farmacología , Gentamicinas/farmacología , Pirazoles/farmacología , Streptococcus pyogenes/efectos de los fármacos , Sulfonamidas/farmacología , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Choque Séptico/tratamiento farmacológico , Infecciones Estreptocócicas/tratamiento farmacológico , Células U937
11.
Stroke ; 51(7): 2219-2223, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32466735

RESUMEN

BACKGROUND AND PURPOSE: Information on stroke survivors infected with coronavirus disease 2019 (COVID-19) is limited. The aim of this study was to describe specific clinical characteristics and outcomes of patients with COVID-19 with a history of stroke. METHODS: All the confirmed cases of COVID-19 at Tongji Hospital from January 27 to March 5, 2020, were included in our cohort study. Clinical data were analyzed and compared between patients with and without a history of stroke. RESULTS: Of the included 1875 patients with COVID-19, 50 patients had a history of stroke. The COVID-19 patients with medical history of stroke were older with more comorbidities, had higher neutrophil count, and lower lymphocyte and platelet counts than those without history of stroke. The levels of D-dimers, cardiac troponin I, NT pro-brain natriuretic peptide, and interleukin-6 were also markedly higher in patients with history of stroke. Stroke survivors who underwent COVID-19 developed more acute respiratory distress syndrome and received more noninvasive mechanical ventilation. Data from propensity-matched analysis indicated a higher proportion of patients with COVD-19 with a history of stroke were admitted to the intensive care unit requiring mechanical ventilation and were more likely to be held in the unit or die, compared with non-stroke history COVID-19 patients. CONCLUSIONS: Patients with COVID-19 with a history of stroke had more severe clinical symptoms and poorer outcomes compared with those without a history of stroke.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Accidente Cerebrovascular/epidemiología , Anciano , Recuento de Células Sanguíneas , COVID-19 , China/epidemiología , Comorbilidad , Infecciones por Coronavirus/epidemiología , Femenino , Mortalidad Hospitalaria , Hospitales Universitarios/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Neumonía Viral/epidemiología , Utilización de Procedimientos y Técnicas , Puntaje de Propensión , Recurrencia , Respiración Artificial/estadística & datos numéricos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2 , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/terapia , Resultado del Tratamiento
12.
Anal Chem ; 92(10): 6822-6826, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32378879

RESUMEN

Exploring efficient luminophores in the electrochemiluminescence (ECL) system is highly desired to pursue a sensitive ECL sensing platform. Herein, the black phosphorus nanosheets (BP NSs) with excellent ECL properties are investigated and serve as the luminophore with the coreactant of peroxydisulfate (S2O82-) solution. Moreover, owing to the overlapping of emission and absorbance spectra, effective resonance energy transfer (RET) is realized between the BP NSs and the introduced Au nanoparticles. In order to achieve the portable and miniaturized developing trends for the paper-based ECL sensing platform, a paper-based perovskite solar cell (PSC) device is designed to act as the power source to replace the commonly utilized expensive and cumbersome electrochemical workstation. Benefiting from that, a PSC driven paper-based constant potential ECL-RET sensing platform is constructed, thereby realizing sensitive microRNAs (miRNAs) detection. What's more, to attain the preferable analytical performance, the duplex-specific nuclease (DSN) is also introduced to assist the target recycling signal amplification strategy. Based on this, highly sensitive detection of miRNA-107 with a range from 0.1 pM to 15 nM is achieved by this designed sensing platform. Most importantly, this work not only pioneers a precedent for developing a high-sensitivity PSC triggered ECL sensing platform but also explores the application prospect of BP nanomaterial in the field of bioanalysis.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Mediciones Luminiscentes , Papel , Fósforo/análisis , Energía Solar , Compuestos de Calcio/química , Óxidos/química , Titanio/química
13.
Anal Chem ; 92(4): 2902-2906, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32013407

RESUMEN

Efficient separation of electron-hole pairs is vitally crucial to enhancing the analytical performance of paper-based photoelectrochemical (PEC) bioanalysis. Herein, a simple but effective strategy is developed to modulate the effective separation of photogenerated electrons and holes via introducing a polar charge carriers-created (PCC) electric field induced by a classical perovskite ferroelectric BaTiO3 (BTO). By inserting it between the n-type WO3 nanoflakes and p-type Cu2O (WO3 nanoflakes/BTO/Cu2O), the photoelectrode is endowed with a renewable PCC electric field, as a sustaining driving force, to guarantee the realization of directional separation of charge carrier (DSCC) strategy in PEC bioanalysis. The enduring PCC electric field can attract the electrons of Cu2O and holes of WO3, respectively, thereby regulating the directional migration of charge carriers and achieving an enhanced PEC photocurrent for the ultrasensitive quantification based on the highly efficient separation of electron-hole pairs. Consequently, with respect to WO3 nanoflakes/Cu2O and WO3 nanoflakes photoelectrode, the polarized WO3 nanoflakes/BTO/Cu2O photoelectrode exhibits 1.7 and 10.9 times higher photocurrent density, respectively. Benefiting from this, the prominent photocurrent density is obtained which is extremely beneficial for enhancing the sensitivity of PEC bioanalysis. Ultimately, the ultrasensitive detection of model prostate specific antigen (PSA) is realized and presents a linear range of 0.1 pg/mL-50 ng/mL with the detection limitation of 0.036 pg/mL. This work provides the basis for understanding the role of the polarized electric field induced by ferroelectric in tuning the charge separation as well as insights on strategies for constructing high-performance paper-based PEC bioanalysis.

14.
J Neurol Neurosurg Psychiatry ; 91(1): 21-32, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31658959

RESUMEN

OBJECTIVES: To systematically review the efficacy and safety of anti-inflammatory agents for patients with major depressive disorders. METHODS: We searched the literature to identify potentially relevant randomised controlled trials (RCTs) up to 1 January 2019. The primary outcome was efficacy, measured by mean changes in depression score from baseline to endpoint. Secondary outcomes included response and remission rates and quality of life (QoL). Safety was evaluated by incidence of classified adverse events. Heterogeneity was examined using the I2 and Q statistic. Pooled standard mean differences (SMDs) and risk ratios (RRs) were calculated. Subgroup meta-analyses were conducted based on type of treatment, type of anti-inflammatory agents, sex, sponsor type and quality of studies. RESULTS: Thirty RCTs with 1610 participants were included in the quantitative analysis. The overall analysis pooling from 26 of the RCTs suggested that anti-inflammatory agents reduced depressive symptoms (SMD -0.55, 95% CI -0.75 to -0.35, I2=71%) compared with placebo. Higher response (RR 1.52, 95% CI 1.30 to 1.79, I2=29%) and remission rates (RR 1.79, 95% CI 1.29 to 2.49, I2=41%) were seen in the group receiving anti-inflammatory agents than in those receiving placebo. Subgroup analysis showed a greater reduction in symptom severity in both the monotherapy and adjunctive treatment groups. Subgroup analysis of non-steroidal anti-inflammatory drugs, omega-3 fatty acids, statins and minocyclines, respectively, disclosed significant antidepressant effects for major depressive disorder (MDD). For women-only trials, no difference in changes of depression severity was found between groups. Subanalysis stratified by sponsor type and study quality led to the same outcomes in favour of anti-inflammatory agents in both subgroups. Changes of QoL showed no difference between the groups. Gastrointestinal events were the only significant differences between groups in the treatment periods. CONCLUSIONS: Results of this systematic review suggest that anti-inflammatory agents play an antidepressant role in patients with MDD and are reasonably safe.


Asunto(s)
Antiinflamatorios/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Antiinflamatorios no Esteroideos/uso terapéutico , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
15.
Int J Neurosci ; 130(11): 1161-1165, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31971044

RESUMEN

Myelin oligodendrocyte glycoprotein (MOG) antibody-related encephalomyelitis is an increasingly recognized entity with heterogeneity in phenotype. Among all clinical phenotypes, encephalitis restricted to cerebral cortex might be most easily ignored and under-estimated type. Here, we described two cases of cerebral cortical encephalitis with MOG seropositivity to facilitate the awareness of the manifestations of the disease. In case 1, the patient presented with headaches and fevers turned out to have elevated CSF cells and cerebral cortical FLAIR hyperintense lesions in brain MRI. He was treated as intracranial infection during his first and second admission and fully resolved when discharged. During the patient's third admission, the patient experienced a seizure, and we found cerebral cortical FLAIR hyperintensity again and MOG antibody was positive in the serum. Therefore, we considered the patient suffered from MOG antibody encephalitis. In case 2, the patient also had headache, fever, and experienced a seizure. MOG antibody was positive in the serum and brain MRI showed cortical hyperintense lesions. Both the patients were young man, response well to corticosteroids and recovered completely. The two cases suggested that encephalitis, especially benign recurrent unilateral cerebral cortical encephalitis with epilepsy, might be a special phenotype of MOG antibody-associated disorders.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Corteza Cerebral/patología , Encefalitis/diagnóstico , Epilepsia/diagnóstico , Glicoproteína Mielina-Oligodendrócito/inmunología , Adulto , Autoanticuerpos/sangre , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/patología , Corteza Cerebral/diagnóstico por imagen , Encefalitis/inmunología , Encefalitis/patología , Encefalitis/fisiopatología , Epilepsia/inmunología , Epilepsia/patología , Epilepsia/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
16.
Int J Neurosci ; 128(9): 886-890, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29384395

RESUMEN

Diffuse Low-Grade Gliomas (LGGs) include World Health Organization (WHO) grade II diffuse astrocytoma, oligodendroglioma and oligoastrocytoma. Since the neurological symptoms of LGGs are often subtle and deceptive, LGGs are easily overlooked at their early stage. Here, we report a case of a 49-year-old female with symptoms and imaging manifestations mimicking ischaemic infarct. After treatments for ischaemic stroke, the symptoms initially fluctuated and then aggravated. In addition, we found that the locations of the lesions did not match the vascular distribution and no obvious abnormalities were observed by Computed Tomography (CT) angiography and transcranial Doppler. The results from the Magnetic Resonance Spectroscopy (MRS) and from the stereotactic biopsy directed to the final diagnosis of WHO grade II, isocitrate dehydrogenase (IDH)-wild-type diffuse astrocytoma. This is the first reported LGG case with a stroke-like onset. This case illustrates how easy it is to misdiagnose an LGG as a stroke if just using cerebral CT and magnetic resonance imaging. MRS and biopsy can assist with the differential diagnosis process thereby avoiding inappropriate or delayed treatments.


Asunto(s)
Isquemia Encefálica/fisiopatología , Neoplasias Encefálicas/fisiopatología , Glioma/diagnóstico por imagen , Glioma/fisiopatología , Isquemia Encefálica/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Glioma/metabolismo , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Tomografía Computarizada por Rayos X
17.
Burns Trauma ; 12: tkad051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250705

RESUMEN

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.

18.
Int Immunopharmacol ; 141: 112930, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146786

RESUMEN

Cardiovascular diseases (CVDs) represent a significant public health concern because of their associations with inflammation, oxidative stress, and abnormal remodeling of the heart and blood vessels. In this review, we discuss the intricate interplay between mitochondria-associated membranes (MAMs) and cardiovascular inflammation, highlighting their role in key cellular processes such as calcium homeostasis, lipid metabolism, oxidative stress management, and ERS. We explored how these functions impact the pathogenesis and progression of various CVDs, including myocardial ischemia-reperfusion injury, atherosclerosis, diabetic cardiomyopathy, cardiovascular aging, heart failure, and pulmonary hypertension. Additionally, we examined current therapeutic strategies targeting MAM-related pathways and proteins, emphasizing the potential of MAMs as therapeutic targets. Our review aims to provide new insights into the mechanisms of cardiovascular inflammation and propose novel therapeutic approaches to improve cardiovascular health outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Inflamación , Membranas Mitocondriales , Humanos , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Inflamación/metabolismo , Inflamación/inmunología , Membranas Mitocondriales/metabolismo , Estrés Oxidativo , Mitocondrias/metabolismo , Membranas Asociadas a Mitocondrias
19.
Biosensors (Basel) ; 13(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998159

RESUMEN

The empty-space-induced depletion region in photoelectrodes severely exacerbates the recombination of electron-hole pairs, thereby reducing the photoelectrochemical (PEC) analytical performance. Herein, the chemical bond that can suppress the potential barrier and overcome the high energy barrier of out-of-plane Ohmic or Schottky contact is introduced into the PEC sensor to eliminate the depletion region and dramatically promote the separation of electron-hole pairs. Specifically, three-dimensional (3D) hierarchically wheatear-like TiO2 (HWT) nanostructures featuring a large surface area to absorb incident light are crafted as the substrate. The facile carbonized strategy is further employed to engineer the Ti-C chemical bond, serving as the touchstone. The average PL lifetime of HWT-C (4.14 ns) is much shorter than that of the 3D HWT (8.57 ns) due to the promoting effect of the chemically bonded structure on carrier separation. Consequently, the 3D HWT-C covalent photoelectrode (600 µA/cm2) exhibits a 3.6-fold increase in photocurrent density compared with the 3D HWT (167 µA/cm2). Ultimately, the model analyte of the tumor marker is detected, and the linear range is 0.02 ng/mL-100 ng/mL with a detection limitation of 0.007 ng/mL. This work provides a basic understanding of chemical bonds in tuning charge separation and insights on strategies for designing high-performance PEC sensors.


Asunto(s)
Biomarcadores de Tumor , Nanoestructuras , Animales , Electrones
20.
Stroke Vasc Neurol ; 8(4): 335-348, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36854487

RESUMEN

Hyperhomocysteinemia (HHcy) is independently associated with poorer long-term prognosis in patients with intracerebral haemorrhage (ICH); however, the effect and mechanisms of HHcy on ICH are still unclear. Here, we evaluated neurite outgrowth and neurological functional recovery using simulated models of ICH with HHcy in vitro and in vivo. We found that the neurite outgrowth velocity and motor functional recovery in the ICH plus HHcy group were significantly slower than that in the control group, indicating that homocysteine (Hcy) significantly impedes the neurite outgrowth recovery after ICH. Furthermore, phosphoproteomic data and signalome analysis of perihematomal brain tissues suggested that calmodulin-dependent protein kinases 2 (CAMK2A) kinase substrate pairs were significantly downregulated in ICH with HHcy compared with autologous blood injection only, both western blot and immunofluorescence staining confirmed this finding. Additionally, upregulation of pCAMK2A significantly increased neurite outgrowth recovery in ICH with HHcy. Collectively, we clarify the mechanism of HHcy-hindered neurite outgrowth recovery, and pCAMK2A may serve as a therapeutic strategy for promoting neurological recovery after ICH.


Asunto(s)
Hemorragia Cerebral , Homocisteína , Humanos , Hemorragia Cerebral/complicaciones , Regulación hacia Arriba , Proyección Neuronal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA