Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 92(4): 1755-1767, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860542

RESUMEN

PURPOSE: Tractography of the facial nerve based on diffusion MRI is instrumental before surgery for the resection of vestibular schwannoma, but no excellent methods usable for the suppression of motion and image noise have been proposed. The aim of this study was to effectively suppress noise and provide accurate facial nerve reconstruction by extend a fiber trajectory distribution function based on the fourth-order streamline differential equations. METHODS: Preoperative MRI from 33 patients with vestibular schwannoma who underwent surgical resection were utilized in this study. First, T1WI and T2WI were used to obtain mask images and regions of interest. Second, probabilistic tractography was employed to obtain the fibers representing the approximate facial nerve pathway, and these fibers were subsequently translated into orientation information for each voxel. Last, the voxel orientation information and the peaks of the fiber orientation distribution were combined to generate a fiber trajectory distribution function, which was used to parameterize the anatomical information. The parameters were determined by minimizing the cost between the trajectory of fibers and the estimated directions. RESULTS: Qualitative and visual analyses were used to compare facial nerve reconstruction with intraoperative recordings. Compared with other methods (SD_Stream, iFOD1, iFOD2, unscented Kalman filter, parallel transport tractography), the fiber-trajectory-distribution-based tractography provided the most accurate facial nerve reconstructions. CONCLUSION: The fiber-trajectory-distribution-based tractography can effectively suppress the effect of noise. It is a more valuable aid for surgeons before vestibular schwannoma resection, which may ultimately improve the postsurgical patient's outcome.


Asunto(s)
Imagen de Difusión Tensora , Nervio Facial , Neuroma Acústico , Humanos , Neuroma Acústico/diagnóstico por imagen , Neuroma Acústico/cirugía , Imagen de Difusión Tensora/métodos , Nervio Facial/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Cuidados Preoperatorios/métodos , Adulto Joven
2.
Comput Biol Med ; 179: 108750, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996551

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with a close association with microstructural alterations in white matter (WM). Current studies lack the characterization and further validation of specific regions in WM fiber tracts in AD. This study subdivided fiber tracts into multiple fiber clusters on the basis of automated fiber clustering and performed quantitative analysis along the fiber clusters to identify local WM microstructural alterations in AD. Diffusion tensor imaging data from a public dataset (53 patients with AD and 70 healthy controls [HCs]) and a clinical dataset (27 patients with AD and 19 HCs) were included for mutual validation. Whole-brain tractograms were automatically subdivided into 800 clusters through the automatic fiber clustering approach. Then, 100 segments were divided along the clusters, and the diffusion properties of each segment were calculated. Results showed that patients with AD had significantly lower fraction anisotropy (FA) and significantly higher mean diffusivity (MD) in some regions of the fiber clusters in the cingulum bundle, uncinate fasciculus, external capsule, and corpus callosum than HCs. Importantly, these changes were reproducible across the two datasets. Correlation analysis revealed a positive correlation between FA and Mini-Mental State Examination (MMSE) scores and a negative correlation between MD and MMSE in these clusters. The accuracy of the constructed classifier reached 89.76% with an area under the curve of 0.93. This finding indicates that this study can effectively identify local WM microstructural changes in AD and provides new insight into the analysis and diagnosis of WM abnormalities in patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Imagen de Difusión Tensora , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Masculino , Anciano , Imagen de Difusión Tensora/métodos , Persona de Mediana Edad , Anciano de 80 o más Años
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA