Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(13): e111867, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37203866

RESUMEN

Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important for innate immunity. Here, we show that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3ζ to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a regulator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Ratones , Animales , Proteínas 14-3-3 , Factores de Transcripción/genética , Mediadores de Inflamación
2.
J Immunol ; 205(3): 760-766, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32540996

RESUMEN

P2X5 is a member of the P2X purinergic receptor family of ligand-gated cation channels and has recently been shown to regulate inflammatory bone loss. In this study, we report that P2X5 is a protective immune regulator during Listeria monocytogenes infection, as P2X5-deficient mice exhibit increased bacterial loads in the spleen and liver, increased tissue damage, and early (within 3-6 d) susceptibility to systemic L. monocytogenes infection. Whereas P2X5-deficient mice experience normal monocyte recruitment in response to L. monocytogenes, P2X5-deficient bone marrow-derived macrophages (BMMs) exhibit defective cytosolic killing of L. monocytogenes We further showed that P2X5 is required for L. monocytogenes-induced inflammasome activation and IL-1ß production and that defective L. monocytogenes killing in P2X5-deficient BMMs is substantially rescued by exogenous IL-1ß or IL-18. Finally, in vitro BMM killing and in vivo L. monocytogenes infection experiments employing either P2X7 deficiency or extracellular ATP depletion suggest that P2X5-dependent anti-L. monocytogenes immunity is independent of the ATP-P2X7 inflammasome activation pathway. Together, our findings elucidate a novel and specific role for P2X5 as a critical mediator of protective immunity.


Asunto(s)
Inflamasomas/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Receptores Purinérgicos P2X5/deficiencia , Adenosina Trifosfato/genética , Adenosina Trifosfato/inmunología , Animales , Susceptibilidad a Enfermedades , Inflamasomas/genética , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Listeriosis/genética , Listeriosis/patología , Macrófagos/patología , Ratones , Ratones Noqueados , Monocitos/patología , Receptores Purinérgicos P2X5/inmunología
3.
PLoS Genet ; 15(6): e1008214, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31251738

RESUMEN

Postpartum depression is a severe emotional and mental disorder that involves maternal care defects and psychiatric illness. Postpartum depression is closely associated with a combination of physical changes and physiological stress during pregnancy or after parturition in stress-sensitive women. Although postpartum depression is relatively well known to have deleterious effects on the developing fetus, the influence of genetic risk factors on the development of postpartum depression remains unclear. In this study, we discovered a novel function of T cell death-associated gene 51 (TDAG51/PHLDA1) in the regulation of maternal and depressive-like behavior. After parturition, TDAG51-deficient dams showed impaired maternal behavior in pup retrieving, nursing and nest building tests. In contrast to the normal dams, the TDAG51-deficient dams also exhibited more sensitive depressive-like behaviors after parturition. Furthermore, changes in the expression levels of various maternal and depressive-like behavior-associated genes regulating neuroendocrine factor and monoamine neurotransmitter levels were observed in TDAG51-deficient postpartum brain tissues. These findings indicate that TDAG51 plays a protective role against maternal care defects and depressive-like behavior after parturition. Thus, TDAG51 is a maternal care-associated gene that functions as a crucial regulator of maternal and depressive-like behavior after parturition.


Asunto(s)
Trastorno Depresivo/genética , Conducta Materna , Parto/genética , Factores de Transcripción/genética , Animales , Encéfalo/metabolismo , Trastorno Depresivo/fisiopatología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Noqueados , Neurotransmisores/genética , Parto/fisiología , Embarazo
4.
J Med Internet Res ; 24(1): e31920, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089155

RESUMEN

BACKGROUND: eHealth and telehealth play a crucial role in assisting older adults who visit hospitals frequently or who live in nursing homes and can benefit from staying at home while being cared for. Adapting to new technologies can be difficult for older people. Thus, to better apply these technologies to older adults' lives, many studies have analyzed the acceptance factors for this particular population. However, there is not yet a consensual framework that can be used in further development and to search for solutions. OBJECTIVE: This paper aims to present an integrated acceptance framework (IAF) for older users' acceptance of eHealth based on 43 studies selected through a systematic review. METHODS: We conducted a 4-step study. First, through a systematic review in the field of eHealth from 2010 to 2020, the acceptance factors and basic data for analysis were extracted. Second, we conducted a thematic analysis to group the factors into themes to propose an integrated framework for acceptance. Third, we defined a metric to evaluate the impact of the factors addressed in the studies. Finally, the differences among the important IAF factors were analyzed according to the participants' health conditions, verification time, and year. RESULTS: Through a systematic review, 731 studies were found in 5 major databases, resulting in 43 (5.9%) selected studies using the PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) methodology. First, the research methods and acceptance factors for eHealth were compared and analyzed, extracting a total of 105 acceptance factors, which were grouped later, resulting in an IAF. A total of 5 dimensions (ie, personal, user-technology relational, technological, service-related, and environmental) emerged, with a total of 23 factors. In addition, we assessed the quality of evidence and then conducted a stratification analysis to reveal the more appropriate factors depending on the health condition and assessment time. Finally, we assessed the factors and dimensions that have recently become more important. CONCLUSIONS: The result of this investigation is a framework for conducting research on eHealth acceptance. To elaborately analyze the impact of the factors of the proposed framework, the criteria for evaluating the evidence from the studies that have the extracted factors are presented. Through this process, the impact of each factor in the IAF has been presented, in addition to the framework proposal. Moreover, a meta-analysis of the current status of research is presented, highlighting the areas where specific measures are needed to facilitate eHealth acceptance.


Asunto(s)
Telemedicina , Anciano , Análisis Factorial , Humanos , Casas de Salud , Proyectos de Investigación , Tecnología , Telemedicina/métodos
5.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672551

RESUMEN

Paired box protein 5 (Pax5) is a crucial transcription factor responsible for B-cell lineage specification and commitment. In this study, we identified a negative role of Pax5 in osteoclastogenesis. The expression of Pax5 was time-dependently downregulated by receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) stimulation in osteoclastogenesis. Osteoclast (OC) differentiation and bone resorption were inhibited (68.9% and 48% reductions, respectively) by forced expression of Pax5 in OC lineage cells. Pax5 led to the induction of antiosteoclastogenic factors through downregulation of B lymphocyte-induced maturation protein 1 (Blimp1). To examine the negative role of Pax5 in vivo, we generated Pax5 transgenic (Pax5Tg) mice expressing the human Pax5 transgene under the control of the tartrate-resistant acid phosphatase (TRAP) promoter, which is expressed mainly in OC lineage cells. OC differentiation and bone resorption were inhibited (54.2-76.9% and 24.0-26.2% reductions, respectively) in Pax5Tg mice, thereby contributing to the osteopetrotic-like bone phenotype characterized by increased bone mineral density (13.0-13.6% higher), trabecular bone volume fraction (32.5-38.1% higher), trabecular thickness (8.4-9.0% higher), and trabecular number (25.5-26.7% higher) and decreased trabecular spacing (9.3-10.4% lower) compared to wild-type control mice. Furthermore, the number of OCs was decreased (48.8-65.3% reduction) in Pax5Tg mice. These findings indicate that Pax5 plays a negative role in OC lineage specification and commitment through Blimp1 downregulation. Thus, our data suggest that the Pax5-Blimp1 axis is crucial for the regulation of RANKL-induced osteoclastogenesis.


Asunto(s)
Regulación hacia Abajo/genética , Osteogénesis , Factor de Transcripción PAX5/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Animales , Huesos/patología , Linaje de la Célula , Regulación hacia Abajo/efectos de los fármacos , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Osteoclastos/metabolismo , Osteogénesis/genética , Osteopetrosis/genética , Osteopetrosis/patología , Factor de Transcripción PAX5/genética , Fenotipo , Ligando RANK/farmacología , Células RAW 264.7 , Transgenes
6.
J Biol Chem ; 291(39): 20643-60, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27507811

RESUMEN

The signaling pathway downstream of stimulation of receptor activator of nuclear factor κB (RANK) by RANK ligand is crucial for osteoclastogenesis. RANK recruits TNF receptor-associated factor 6 (TRAF6) to TRAF6-binding sites (T6BSs) in the RANK cytoplasmic tail (RANKcyto) to trigger downstream osteoclastogenic signaling cascades. RANKcyto harbors an additional highly conserved domain (HCR) that also activates crucial signaling during RANK-mediated osteoclastogenesis. However, the functional cross-talk between T6BSs and the HCR in the RANK signaling complex remains unclear. To characterize the cross-talk between T6BSs and the HCR, we screened TRAF6-interacting proteins using a proteomics approach. We identified Vav3 as a novel TRAF6 binding partner and evaluated the functional importance of the TRAF6-Vav3 interaction in the RANK signaling complex. We demonstrated that the coiled-coil domain of TRAF6 interacts directly with the Dbl homology domain of Vav3 to form the RANK signaling complex independent of the TRAF6 ubiquitination pathway. TRAF6 is recruited to the RANKcyto mutant, which lacks T6BSs, via the Vav3 interaction; conversely, Vav3 is recruited to the RANKcyto mutant, which lacks the IVVY motif, via the TRAF6 interaction. Finally, we determined that the TRAF6-Vav3 interaction resulting from cross-talk between T6BSs and the IVVY motif in RANKcyto enhances downstream NF-κB, MAPK, and NFATc1 activation by further strengthening TRAF6 signaling, thereby inducing RANK-mediated osteoclastogenesis. Thus, Vav3 is a novel TRAF6 interaction partner that functions in the activation of cooperative signaling between T6BSs and the IVVY motif in the RANK signaling complex.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Complejos Multiproteicos/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Secuencias de Aminoácidos , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos/genética , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoclastos/citología , Proteínas Proto-Oncogénicas c-vav/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Factor 6 Asociado a Receptor de TNF/genética , Ubiquitinación/fisiología
7.
Protein Expr Purif ; 131: 34-41, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27838376

RESUMEN

Many pesticides and chemical warfare nerve agents are highly toxic organophosphorus compounds (OPs), which inhibit acetylcholinesterase activity. Human paraoxonase 1 (PON1) has demonstrated significant potential for use as a catalytic bioscavenger capable of hydrolyzing a broad range of OPs. However, there are several limitations to the use of human PON1 as a catalytic bioscavenger, including the relatively difficult purification of PON1 from human plasma and its dependence on the presence of hydrophobic binding partners to maintain stability. Therefore, research efforts to efficiently produce recombinant human PON1 are necessary. In this study, we developed a Drosophila S2 stable cell line expressing recombinant human PON1. The recombinant human PON1 was fused with the human immunoglobulin Fc domain (PON1-hFc) to improve protein stability and purification efficiency. We purified the recombinant human PON1-hFc from the S2 stable cell line and characterized its enzymatic properties for OP hydrolysis. We purified the recombinant human PON1-hFc from the S2 stable cell line and characterized its enzymatic properties for OP hydrolysis compared with those of the recombinant human PON1 derived from E. coli. We observed that the recombinant human PON1-hFc is functionally more stable for OP hydrolyzing activities compared to the recombinant human PON1. The catalytic efficiency of the recombinant PON1-hFc towards diisopropyl fluorophosphate (DFP, 0.26 × 106 M-1 min-1) and paraoxon hydrolysis (0.015 × 106 M-1 min-1) was 1.63- and 1.24-fold higher, respectively, than the recombinant human PON1. Thus, we report that the recombinant PON1-hFc exerts hydrolytic activity against paraoxon and DFP.


Asunto(s)
Arildialquilfosfatasa , Expresión Génica , Fragmentos Fc de Inmunoglobulinas , Proteínas Recombinantes de Fusión , Animales , Arildialquilfosfatasa/biosíntesis , Arildialquilfosfatasa/química , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/aislamiento & purificación , Línea Celular , Drosophila melanogaster , Humanos , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
8.
J Biol Chem ; 290(15): 9660-73, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25716317

RESUMEN

The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.


Asunto(s)
Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Factor 2 Asociado a Receptor de TNF/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitina/metabolismo , Sitios de Unión/genética , Citocinas/genética , Citocinas/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Lisina/genética , Lisina/metabolismo , FN-kappa B/metabolismo , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Esfingosina/metabolismo , Factor 2 Asociado a Receptor de TNF/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitinación
9.
Neurochem Res ; 41(8): 1887-98, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27038928

RESUMEN

The processes of N-methyl-D-aspartate (NMDA) receptor subunits expression were examined in cortical neurons and rat brain in order to investigate how the concanavalin A (Con A) modulates neuronal cells. Con A modulated the expression of NMDA receptor subunits in cultured cortical cells. Con A augmented the level of intracellular Ca(2+) by α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA). We determined whether activation of AMPA receptors was involved in the regulation of NMDA receptor expression with Con A by blocking the desensitization of AMPA receptors. The results showed that AMPA receptor antagonists suppressed NMDA receptor subunits expression in Con A-treated cortical neuronal cells. PMA elevated the expression of NMDA receptor subunits, while PKC inhibitor and tyrosine kinases inhibitor suppressed the expression of NMDA receptor subunits. Furthermore, it was shown that NMDA receptor subunits expression was modulated in a region-specific manner after the sustained microinfusion of Con A into the cerebroventricle of the rat brain. Collectively, it could be presumed that the AMPA receptor activation was involved in Con A-induced modulation of NMDA receptor subunits expression.


Asunto(s)
Concanavalina A/administración & dosificación , Subunidades de Proteína/biosíntesis , Receptores de N-Metil-D-Aspartato/biosíntesis , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica , Infusiones Intraventriculares , Masculino , Ratones , Ratones Endogámicos ICR , Subunidades de Proteína/agonistas , Subunidades de Proteína/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Receptores AMPA/agonistas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/biosíntesis , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
10.
J Biol Chem ; 289(52): 35868-81, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25359771

RESUMEN

Genetic mutations in osteoclastogenic genes are closely associated with osteopetrotic bone diseases. Genetic defects in OSTM1 (osteopetrosis-associated transmembrane protein 1) cause autosomal recessive osteopetrosis in humans. In particular, OSTM1 mutations that exclude the transmembrane domain might lead to the production of a secreted form of truncated OSTM1. However, the precise role of the secreted form of truncated OSTM1 remains unknown. In this study, we analyzed the functional role of truncated OSTM1 in osteoclastogenesis. Here, we showed that a secreted form of truncated OSTM1 binds to the cell surface of osteoclast (OC) precursors and inhibits the formation of multinucleated OCs through the reduction of cell fusion and survival. Truncated OSTM1 significantly inhibited the expression of OC marker genes through the down-regulation of the BLIMP1 (B lymphocyte-induced maturation protein 1)-NFATc1 (nuclear factor of activated T cells c1) axis. Finally, we demonstrated that truncated OSTM1 reduces lipopolysaccharide-induced bone destruction in vivo. Thus, these findings suggest that autosomal recessive osteopetrosis patients with an OSTM1 gene mutation lacking the transmembrane domain produce a secreted form of truncated OSTM1 that inhibits osteoclastogenesis.


Asunto(s)
Proteínas de la Membrana/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/fisiología , Factores de Transcripción/metabolismo , Animales , Resorción Ósea/inmunología , Resorción Ósea/metabolismo , Diferenciación Celular , Fusión Celular , Supervivencia Celular , Células Cultivadas , Regulación hacia Abajo , Expresión Génica , Lipopolisacáridos/farmacología , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Osteoclastos/inmunología , Osteoporosis/inmunología , Osteoporosis/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Transducción de Señal
11.
Molecules ; 20(7): 13041-54, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26205049

RESUMEN

This study provides the scientific basis for the anti-inflammatory effects of licorice extract in a t-BHP (tert-butyl hydrogen peroxide)-induced liver damage model and the effects of its ingredients, glycyrrhizic acid (GA), liquiritin (LQ) and liquiritigenin (LG), in a lipopolysaccharide (LPS)-stimulated microglial cell model. The GA, LQ and LG inhibited the LPS-stimulated elevation of pro-inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and interleukin (IL)-6 in BV2 (mouse brain microglia) cells. Furthermore, licorice extract inhibited the expression levels of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) in the livers of t-BHP-treated mice models. This result suggested that mechanistic-based evidence substantiating the traditional claims of licorice extract and its three bioactive components can be applied for the treatment of inflammation-related disorders, such as oxidative liver damage and inflammation diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Flavanonas/farmacología , Glucósidos/farmacología , Glycyrrhiza/química , Ácido Glicirrínico/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antioxidantes/farmacología , Línea Celular , Modelos Animales de Enfermedad , Flavanonas/aislamiento & purificación , Glucósidos/aislamiento & purificación , Ácido Glicirrínico/aislamiento & purificación , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Óxido Nítrico/metabolismo , Estrés Oxidativo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
12.
Mar Drugs ; 12(11): 5643-56, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25421321

RESUMEN

In the present study, we investigated the effect of agelasine D (AD) on osteoclastogenesis. Treatment of bone marrow macrophages (BMMs) with receptor activator of nuclear factor κB ligand (RANKL) resulted in a differentiation of BMMs into osteoclasts as evidenced by generation of tartrate-resistant acid phosphatase (TRAP)-positive, multinucleated cells and formation of pits in calcium phosphate-coated plates. However, RANKL-induced osteoclastogenesis was significantly suppressed by AD treatment. We also confirmed the increased mRNA and protein expression of osteoclastic markers, such as TRAP, cathepsin K and matrix metalloproteinase-9, during RANKL-induced osteoclast differentiation and this was down-regulated by AD treatment. Moreover, AD treatment significantly suppressed RANKL-induced mRNA expression of DC-STAMP and OC-STAMP and cell fusion of TRAP-positive mononuclear osteoclast precursors. In addition, AD suppressed RANKL-induced expression of transcription factors, c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important transcription factors involved in differentiation of BMMs into osteoclasts. Furthermore, RANKL-induced phosphorylation of extracellular signal-related kinase (ERK) and activation of NF-κB were also inhibited by AD treatment. Collectively, these results suggest that AD inhibits RANKL-induced osteoclastogenesis by down-regulation of multiple signaling pathways involving c-Fos, NFATc1, NF-κB and ERK. Our results also suggest that AD might be a potential therapeutic agent for prevention and treatment of osteoporosis.


Asunto(s)
Fosfatasa Ácida/metabolismo , Isoenzimas/metabolismo , Osteoclastos/efectos de los fármacos , Purinas/farmacología , Ligando RANK/administración & dosificación , Animales , Células de la Médula Ósea/citología , Regulación hacia Abajo , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , Factores de Transcripción NFATC/genética , Osteoclastos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ligando RANK/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatasa Ácida Tartratorresistente
13.
Stud Health Technol Inform ; 316: 1943-1944, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39176872

RESUMEN

Korean National Institute of Health initiated data harmonization across cohorts with the aim to ensure semantic interoperability of data and to create a common database of standardized data elements for future collaborative research. With this aim, we reviewed code books of cohorts and identified common data items and values which can be combined for data analyses. We then mapped data items and values to standard health terminologies such as SNOMED CT. Preliminary results of this ongoing data harmonization work will be presented.


Asunto(s)
Systematized Nomenclature of Medicine , Registros Electrónicos de Salud , Humanos , Semántica , Vocabulario Controlado , Terminología como Asunto
14.
J Leukoc Biol ; 115(3): 511-524, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-37952106

RESUMEN

Tissue infiltration by circulating leukocytes via directed migration (also referred to as chemotaxis) is a common pathogenic mechanism of inflammatory diseases. G protein-coupled receptors (GPCRs) are essential for sensing chemokine gradients and directing the movement of leukocytes during immune responses. The tumor necrosis factor α-induced protein 8-like (TIPE or TNFAIP8L) family of proteins are newly described pilot proteins that control directed migration of murine leukocytes. However, how leukocytes integrate site-specific directional cues, such as chemokine gradients, and utilize GPCR and TIPE proteins to make directional decisions are not well understood. Using both gene knockdown and biochemical methods, we demonstrated here that 2 human TIPE family members, TNFAIP8 and TIPE2, were essential for directed migration of human CD4+ T cells. T cells deficient in both of these proteins completely lost their directionality. TNFAIP8 interacted with the Gαi subunit of heterotrimeric (α, ß, γ) G proteins, whereas TIPE2 bound to PIP2 and PIP3 to spatiotemporally control immune cell migration. Using deletion and site-directed mutagenesis, we established that Gαi interacted with TNFAIP8 through its C-terminal amino acids, and that TIPE2 protein interacted with PIP2 and PIP3 through its positively charged amino acids on the α0 helix and at the grip-like entrance. We also discovered that TIPE protein membrane translocation (i.e. crucial for sensing chemokine gradients) was dependent on PIP2. Collectively, our work describes a new mechanistic paradigm for how human T cells integrate GPCR and phospholipid signaling pathways to control directed migration. These findings have implications for therapeutically targeting TIPE proteins in human inflammatory and autoimmune diseases.


Asunto(s)
Sistemas de Mensajero Secundario , Transducción de Señal , Humanos , Animales , Ratones , Quimiocinas , Aminoácidos , Lípidos , Péptidos y Proteínas de Señalización Intracelular
15.
ACS Appl Mater Interfaces ; 16(26): 32945-32956, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912948

RESUMEN

Photothermal therapy (PTT) is a promising cancer therapeutic approach due to its spatial selectivity and high potency. Indocyanine green (ICG) has been considered a biocompatible PTT agent. However, ICG has several challenges to hinder its clinical use including rapid blood clearance and instability to heat, light, and solvent, leading to a loss of photoactivation property and PTT efficacy. Herein, we leveraged stabilizing components, methyl-ß-cyclodextrin and liposomes, in one nanoplatform (ICD lipo) to enhance ICG stability and the photothermal therapeutic effect against cancer. Compared to ICG, ICD lipo displayed a 4.8-fold reduction in degradation in PBS solvent after 30 days and a 3.4-fold reduction in photobleaching after near-infrared laser irradiation. Moreover, in tumor-bearing mice, ICD lipo presented a 2.7-fold increase in tumor targetability and inhibited tumor growth 9.6 times more effectively than did ICG without any serious toxicity. We believe that ICD lipo could be a potential PTT agent for cancer therapeutics.


Asunto(s)
Verde de Indocianina , Liposomas , Terapia Fototérmica , Verde de Indocianina/química , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Animales , Ratones , Liposomas/química , Humanos , beta-Ciclodextrinas/química , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Femenino , Ratones Endogámicos BALB C , Fototerapia
16.
Cells ; 13(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38534373

RESUMEN

Extended liver resection carries the risk of post-surgery liver failure involving thrombospondin-1-mediated aggravation of hepatic epithelial plasticity and function. Mesenchymal stromal cells (MSCs), by interfering with thrombospondin-1 (THBS1), counteract hepatic dysfunction, though the mechanisms involved remain unknown. Herein, two-thirds partial hepatectomy in mice increased hepatic THBS1, downstream transforming growth factor-ß3, and perturbation of liver tissue homeostasis. All these events were ameliorated by hepatic transfusion of human bone marrow-derived MSCs. Treatment attenuated platelet and macrophage recruitment to the liver, both major sources of THBS1. By mitigating THBS1, MSCs muted surgery-induced tissue deterioration and dysfunction, and thus supported post-hepatectomy regeneration. After liver surgery, patients displayed increased tissue THBS1, which is associated with functional impairment and may indicate a higher risk of post-surgery complications. Since liver dysfunction involving THBS1 improves with MSC treatment in various animal models, it seems feasible to also modulate THBS1 in humans to impede post-surgery acute liver failure.


Asunto(s)
Hepatopatías , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Hepatectomía , Regeneración Hepática/fisiología , Trombospondinas
17.
J Cell Biochem ; 113(4): 1426-36, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22173791

RESUMEN

Numerous studies have shown that hydrogen peroxide (H(2)O(2)) inhibits proliferation and osteoblastic differentiation in bone-like cells. Human periodontal ligament fibroblasts (PLF) are capable of differentiating into osteoblasts and are exposed to oxidative stress during periodontal inflammation. However, the cellular responses of PLF to H(2)O(2) have not been identified. In this study, we examined how H(2)O(2) affects the viability and proliferation of PLF by exposing the cells to glucose oxidase (GO) or direct addition of H(2)O(2). We also explored the effects of GO on the osteoblastic differentiation of PLF and the mechanisms involved. The viability and proliferation in PLF were increased with the addition of 10 mU/ml GO but not by volumes greater than 15 mU/ml or by H(2)O(2) itself. GO-stimulated DNA synthesis was correlated with the increase in cyclin E protein levels in the cells. Osteoblastic differentiation of PLF was also augmented by combined treatment with GO, as evidenced by the increases in alkaline phosphatase activity, mineralization, collagen synthesis, and osteocalcin content in the cells. The inductions of runt-related transcription factor 2 and osterix mRNA and proteins were further increased in PLF incubated in combination with GO compared to those in untreated cells. These results demonstrate that the continuous presence of H(2)O(2) stimulates the proliferation of PLF and augments their potential to differentiate into osteoblasts through the up-regulation of bone-specific transcription factors. Collectively, we suggest that H(2)O(2) may elicit the functions of PLF in maintaining the dimensions of the periodontal ligament and in mediating a balanced metabolism in alveolar bone.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Osteoblastos/efectos de los fármacos , Ligamento Periodontal/efectos de los fármacos , Adulto , Secuencia de Bases , Western Blotting , Colágeno/metabolismo , Medios de Cultivo , Cartilla de ADN , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Masculino , Osteoblastos/citología , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
J Clin Immunol ; 32(6): 1360-71, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22711011

RESUMEN

PURPOSE: Osteoclasts (OCs) are multinucleated giant cells that resorb bone matrix. Accelerated bone destruction by OCs might cause several metabolic bone-related diseases, such as osteoporosis and inflammatory bone loss. D-pinitol (3-O-methyl-D-chiro-inositol) is a prominent component of dietary legumes and is actively converted to D-chiro-inositol, which is a putative insulin-like mediator. In this study, we analyzed the effect of D-chiro-inositol on OC differentiation. METHODS: To analyze the role of D-chiro-inositol on OC differentiation, we examined OC differentiation by the three types of osteoclastogenesis cultures with tartrate-resistant acid phosphatase (TRAP) staining and solution assay. Then, we carried out cell fusion assay with purified TRAP(+) mononuclear OC precursors. Finally, we analyzed the effect of D-chiro-inositol on OC maker expression in response to the regulation of nuclear factor of activated T cells c1 (NFATc1). RESULTS: We demonstrated that D-chiro-inositol acts as an inhibitor of receptor activator of NF-κB ligand-induced OC differentiation. The formation of multinucleated OCs by cell-cell fusion is reduced by treatment with D-chiro-inositol in a dose-dependent manner. In addition, we demonstrated that D-chiro-inositol inhibits the expression of several osteoclastogenic genes by down-regulating NFATc1. CONCLUSIONS: We have shown that D-chiro-inositol is negatively involved in osteoclastogenesis through the inhibition of multinucleated OC formation by cell-cell fusion. The expression of NFATc1 was significantly down-regulated by D-chiro-inositol in OCs and consequently, the expression of OC marker genes was significantly reduced. Hence, these results show that D-chiro-inositol might be a good candidate to treat inflammatory bone-related diseases or secondary osteoporosis in diabetes mellitus.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Células Gigantes/efectos de los fármacos , Inositol/farmacología , Factores de Transcripción NFATC/genética , Osteoclastos/efectos de los fármacos , Ligando RANK/genética , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Fusión Celular , Línea Celular , Relación Dosis-Respuesta a Droga , Células Gigantes/patología , Humanos , Inositol/análogos & derivados , Ratones , Factores de Transcripción NFATC/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Estereoisomerismo
19.
Biosci Biotechnol Biochem ; 76(11): 2038-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23132562

RESUMEN

Obovatol has various biological activities, including anti-proliferative, neurotrophic, anti-fibrillogenic, anti-platelet, anti-fungal and anti-inflammatory activities. In this study, we investigated the effects of JJK694, a synthesized obovatol derivative, on rabbit platelet activation and its molecular mechanisms. JJK694 significantly inhibited washed rabbit platelet aggregation and serotonin secretion induced by collagen and arachidonic acid, but had little effect on thrombin- or U46619-induced aggregation. These results suggest that JJK694 selectively inhibits collagen- and arachidonic acid-mediated signaling. JJK694 also showed a concentration-dependent decrease in cytosolic Ca(2+) mobilization, but it had no effect on arachidonic acid liberation. On the other hand, it significantly inhibited the formation of arachidonic acid metabolites, including thromboxane A(2) (TXA(2)), prostaglandin D(2), and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE), by suppression of cyclooxygenase (COX)-1 and lipoxygenase (LOX) activities. These results indicate that JJK694 hasanti-platelet activities through inhibition of arachidonic acid metabolite production by suppression of COX-1 and LOX activities.


Asunto(s)
Compuestos de Bifenilo/farmacología , Catecoles/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Lipooxigenasa/metabolismo , Éteres Fenílicos/farmacología , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biosíntesis , Animales , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Calcio/metabolismo , Catecoles/síntesis química , Catecoles/química , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/síntesis química , Inhibidores de la Ciclooxigenasa/química , Citosol/efectos de los fármacos , Citosol/metabolismo , Dinoprostona/biosíntesis , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/química , Masculino , Éteres Fenílicos/síntesis química , Éteres Fenílicos/química , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Conejos , Serotonina/metabolismo
20.
Sci Rep ; 12(1): 20619, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450854

RESUMEN

Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of chronic inflammatory diseases of the gastrointestinal tract. Although the multifactorial etiology of IBD pathogenesis is relatively well documented, the regulatory factors that confer a risk of IBD pathogenesis remain less explored. In this study, we report that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the development of dextran sulfate sodium (DSS)-induced colitis in mice. TDAG51 expression was elevated in the colon tissues of DSS-induced experimental colitis mice. TDAG51 deficiency protected mice against acute DSS-induced lethality and body weight changes and disease severity. DSS-induced structural damage and mucus secretion in colon tissues were significantly reduced in TDAG51-deficient mice compared with wild-type mice. We observed similar results in a DSS-induced chronic colitis mouse model. Finally, we showed that the production of inflammatory mediators, including proinflammatory enzymes, molecules and cytokines, was decreased in DSS-treated TDAG51-deficient mice compared with DSS-treated wild-type mice. Thus, we demonstrated that TDAG51 deficiency plays a protective role against DSS-induced colitis by decreasing the production of inflammatory mediators in mice. These findings suggest that TDAG51 is a novel regulator of the development of DSS-induced colitis and is a potential therapeutic target for IBD.


Asunto(s)
Escarabajos , Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Sulfato de Dextran/toxicidad , Colitis/inducido químicamente , Mediadores de Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA