Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 738: 150522, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39154551

RESUMEN

The role of peroxiredoxin 1 (PRDX1), a crucial enzyme that reduces reactive oxygen and nitrogen species levels in HepG2 human hepatocellular carcinoma (HCC) cells, in the regulation of HCC cell stemness under oxidative stress and the underlying mechanisms remain largely unexplored. Here, we investigated the therapeutic potential of non-thermal plasma in targeting cancer stem cells (CSCs) in HCC, focusing on the mechanisms of resistance to oxidative stress and the role of PRDX1. By simulating oxidative stress conditions using the plasma-activated medium, we found that a reduction in PRDX1 levels resulted in a considerable increase in HepG2 cell apoptosis, suggesting that PRDX1 plays a key role in oxidative stress defense mechanisms in CSCs. Furthermore, we found that HepG2 cells had higher spheroid formation capability and increased levels of stem cell markers (CD133, c-Myc, and OCT-4), indicating strong stemness. Interestingly, PRDX1 expression was notably higher in HepG2 cells than in other HCC cell types such as Hep3B and Huh7 cells, whereas the expression levels of other PRDX family proteins (PRDX 2-6) were relatively consistent. The inhibition of PRDX1 expression and peroxidase activity by conoidin A resulted in markedly reduced stemness traits and increased cell death rate. Furthermore, in a xenograft mouse model, PRDX1 downregulation considerably inhibited the formation of solid tumors after plasma-activated medium (PAM) treatment. These findings underscore the critical role of PRDX 1 in regulating stemness and apoptosis in HCC cells under oxidative stress, highlighting PRDX1 as a promising therapeutic target for NTP-based treatment in HCC.

2.
Mol Ther ; 31(7): 2169-2187, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37211762

RESUMEN

Hypertrophic lysosomes are critical for tumor progression and drug resistance; however, effective and specific lysosome-targeting compounds for cancer therapy are lacking. Here we conducted a lysosomotropic pharmacophore-based in silico screen in a natural product library (2,212 compounds), and identified polyphyllin D (PD) as a novel lysosome-targeted compound. PD treatment was found to cause lysosomal damage, as evidenced by the blockade of autophagic flux, loss of lysophagy, and the release of lysosomal contents, thus exhibiting anticancer effects on hepatocellular carcinoma (HCC) cell both in vitro and in vivo. Closer mechanistic examination revealed that PD suppressed the activity of acid sphingomyelinase (SMPD1), a lysosomal phosphodieserase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine, by directly occupying its surface groove, with Trp148 in SMPD1 acting as a major binding residue; this suppression of SMPD1 activity irreversibly triggers lysosomal injury and initiates lysosome-dependent cell death. Furthermore, PD-enhanced lysosomal membrane permeabilization to release sorafenib, augmenting the anticancer effect of sorafenib both in vivo and in vitro. Overall, our study suggests that PD can potentially be further developed as a novel autophagy inhibitor, and a combination of PD with classical chemotherapeutic anticancer drugs could represent a novel therapeutic strategy for HCC intervention.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Esfingomielina Fosfodiesterasa/farmacología , Neoplasias Hepáticas/metabolismo , Lisosomas/metabolismo , Autofagia , Resistencia a Medicamentos , Punciones
3.
Cell Commun Signal ; 21(1): 296, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864270

RESUMEN

BACKGROUND: Exosomes are small extracellular vesicles that play important roles in intercellular communication and have potential therapeutic applications in regenerative medicine. Dermal mesenchymal stem cells (DMSCs) are a promising source of exosomes due to their regenerative and immunomodulatory properties. However, the molecular mechanisms regulating exosome secretion from DMSCs are not fully understood. RESULTS: In this study, the role of peroxiredoxin II (Prx II) in regulating exosome secretion from DMSCs and the underlying molecular mechanisms were investigated. It was discovered that depletion of Prx II led to a significant reduction in exosome secretion from DMSCs and an increase in the number of intracellular multivesicular bodies (MVBs), which serve as precursors of exosomes. Mechanistically, Prx II regulates the ISGylation switch that controls MVB degradation and impairs exosome secretion. Specifically, Prx II depletion decreased JNK activity, reduced the expression of the transcription inhibitor Foxo1, and promoted miR-221 expression. Increased miR-221 expression inhibited the STAT signaling pathway, thus downregulating the expression of ISGylation-related genes involved in MVB degradation. Together, these results identify Prx II as a critical regulator of exosome secretion from DMSCs through the ISGylation signaling pathway. CONCLUSIONS: Our findings provide important insights into the molecular mechanisms regulating exosome secretion from DMSCs and highlight the critical role of Prx II in controlling the ISGylation switch that regulates DMSC-exosome secretion. This study has significant implications for developing new therapeutic strategies in regenerative medicine. Video Abstract.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Exosomas/metabolismo , Peroxirredoxinas/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901932

RESUMEN

Although molecular regulation of cellulolytic enzyme production in filamentous fungi has been actively explored, the underlying signaling processes in fungal cells are still not clearly understood. In this study, the molecular signaling mechanism regulating cellulase production in Neurospora crassa was investigated. We found that the transcription and extracellular cellulolytic activity of four cellulolytic enzymes (cbh1, gh6-2, gh5-1, and gh3-4) increased in Avicel (microcrystalline cellulose) medium. Intracellular nitric oxide (NO) and reactive oxygen species (ROS) detected by fluorescent dyes were observed in larger areas of fungal hyphae grown in Avicel medium compared to those grown in glucose medium. The transcription of the four cellulolytic enzyme genes in fungal hyphae grown in Avicel medium was significantly decreased and increased after NO was intracellularly removed and extracellularly added, respectively. Furthermore, we found that the cyclic AMP (cAMP) level in fungal cells was significantly decreased after intracellular NO removal, and the addition of cAMP could enhance cellulolytic enzyme activity. Taken together, our data suggest that the increase in intracellular NO in response to cellulose in media may have promoted the transcription of cellulolytic enzymes and participated in the elevation of intracellular cAMP, eventually leading to improved extracellular cellulolytic enzyme activity.


Asunto(s)
Celulasa , Neurospora crassa , Neurospora crassa/genética , Óxido Nítrico , Celulosa , Celulasa/genética , Proteínas Fúngicas/genética
5.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743111

RESUMEN

For the industrial-scale production of useful enzymes by microorganisms, technological development is required for overcoming a technical bottleneck represented by poor efficiency in the induction of enzyme gene expression and secretion. In this study, we evaluated the potential of a non-thermal atmospheric pressure plasma jet to improve the production efficiency of cellulolytic enzymes in Neurospora crassa, a filamentous fungus. The total activity of cellulolytic enzymes and protein concentration were significantly increased (1.1~1.2 times) in media containing Avicel 24-72 h after 2 and 5 min of plasma treatment. The mRNA levels of four cellulolytic enzymes in fungal hyphae grown in media with Avicel were significantly increased (1.3~17 times) 2-4 h after a 5 min of plasma treatment. The levels of intracellular NO and Ca2+ were increased in plasma-treated fungal hyphae grown in Avicel media after 48 h, and the removal of intracellular NO decreased the activity of cellulolytic enzymes in media and the level of vesicles in fungal hyphae. Our data suggest that plasma treatment can promote the transcription and secretion of cellulolytic enzymes into the culture media in the presence of Avicel (induction condition) by enhancing the intracellular level of NO and Ca2+.


Asunto(s)
Celulasa , Neurospora crassa , Celulasa/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Neurospora crassa/genética
6.
Genomics ; 112(6): 3846-3855, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32619572

RESUMEN

Insects employ a sensitive chemosensory system to accurately recognize external odorants, which help them to make a behavioral response quickly. Semiothisa cinerearia has caused serious damages to Sophora japonica L. in recent years, and there is still a lack of effective strategy to control the pest. Although the two type-II sex pheromones of S. cinerearia, 6Z,9Z-cis-3,4-epoxy-17:H and 3Z,6Z,9Z-17:H, have been identified for 30 years, the molecular mechanisms underlying the chemosensation of the two sex pheromones are still unknown. Here, we found that there are differences in the types of antennae sensilla between sexes, and revealed 146 putative chemosensory genes in the antennal transcriptome. Among these genes, 11 and 40 of them displayed male-biased and female-biased expression, respectively. Our findings greatly improve the chemosensory gene resources for S. cinerearia and provide a foundation for functional studies of these sex-biased genes on the chemosensation of sex pheromones and on other sex-related behaviors.


Asunto(s)
Mariposas Nocturnas/genética , Receptores Odorantes/genética , Atractivos Sexuales/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Mariposas Nocturnas/fisiología , Filogenia , Transcriptoma
7.
J Fungi (Basel) ; 10(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38392826

RESUMEN

Nitric oxide (NO) is synthesized in all kingdoms of life, where it plays a role in the regulation of various physiological and developmental processes. In terms of endogenous NO biology, fungi have been less well researched than mammals, plants, and bacteria. In this review, we summarize and discuss the studies to date on intracellular NO biosynthesis and function in fungi. Two mechanisms for NO biosynthesis, NO synthase (NOS)-mediated arginine oxidation and nitrate- and nitrite-reductase-mediated nitrite reduction, are the most frequently reported. Furthermore, we summarize the multifaceted functions of NO in fungi as well as its role as a signaling molecule in fungal growth regulation, development, abiotic stress, virulence regulation, and metabolism. Finally, we present potential directions for future research on fungal NO biology.

8.
Clin Exp Ophthalmol ; 41(2): 172-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22712555

RESUMEN

BACKGROUND: To investigate the preventive effect of danshensu on the selenite-induced opacification of cultured rat lenses. METHODS: Isolated lens were divided into three groups with eight lenses in each group. Group I: lenses were incubated with M199 medium alone; Group II: incubated in M199 containing 200 µmol/L sodium selenite; Group III: incubated in M199 containing 200 µmol/L sodium selenite and 500 µmol/L danshensu. Selenite was administered on the third day, and danshensu treatment was from the second to the fifth day. Cataracts development was observed using an inverted microscope, and the lenses were analysed for total anti-oxidative capabilities, mean activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione S-transferase; levels of reduced glutathione; malondialdehyde; and total sulfhydryl content. RESULTS: All lenses in Group I were clear, whereas all lenses in Group II developed dense vacuolization and opacification. In Group III, 25% lenses revealed minimal vacuolization, and 75% showed no opacification or vacuolization. Total anti-oxidative capabilities and the mean activities of anti-oxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione S-transferase; levels of glutathione; and total sulfhydryl content were elevated, and the level of malondialdehyde was decreased following treatment with danshensu compared with Group II. CONCLUSION: The anti-oxidative properties of danshensu may play a major role in its contribution to the anticataract effect.


Asunto(s)
Catarata/inducido químicamente , Catarata/prevención & control , Medicamentos Herbarios Chinos/farmacología , Lactatos/farmacología , Cristalino/efectos de los fármacos , Salvia miltiorrhiza , Animales , Antioxidantes/farmacología , Catalasa/metabolismo , Medios de Cultivo/farmacología , Medicamentos Herbarios Chinos/química , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Lactatos/química , Cristalino/metabolismo , Masculino , Malondialdehído/metabolismo , Técnicas de Cultivo de Órganos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Selenito de Sodio/toxicidad , Superóxido Dismutasa/metabolismo
9.
J Fungi (Basel) ; 9(10)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37888241

RESUMEN

While the biological role of naturally occurring nitric oxide (NO) in filamentous fungi has been uncovered, the underlying molecular regulatory networks remain unclear. In this study, we conducted an analysis of transcriptome profiles to investigate the initial stages of understanding these NO regulatory networks in Neurospora crassa, a well-established model filamentous fungus. Utilizing RNA sequencing, differential gene expression screening, and various functional analyses, our findings revealed that the removal of intracellular NO resulted in the differential transcription of 424 genes. Notably, the majority of these differentially expressed genes were functionally linked to processes associated with carbohydrate and amino acid metabolism. Furthermore, our analysis highlighted the prevalence of four specific protein domains (zinc finger C2H2, PLCYc, PLCXc, and SH3) in the encoded proteins of these differentially expressed genes. Through protein-protein interaction network analysis, we identified eight hub genes with substantial interaction connectivity, with mss-4 and gel-3 emerging as possibly major responsive genes during NO scavenging, particularly influencing vegetative growth. Additionally, our study unveiled that NO scavenging led to the inhibition of gene transcription related to a protein complex associated with ribosome biogenesis. Overall, our investigation suggests that endogenously produced NO in N. crassa likely governs the transcription of genes responsible for protein complexes involved in carbohydrate and amino acid metabolism, as well as ribosomal biogenesis, ultimately impacting the growth and development of hyphae.

10.
J Pharm Anal ; 13(10): 1168-1182, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38024857

RESUMEN

Divisions at the periphery and midzone of mitochondria are two fission signatures that determine the fate of mitochondria and cells. Pharmacological induction of excessively asymmetric mitofission-associated cell death (MFAD) by switching the scission position from the mitochondrial midzone to the periphery represents a promising strategy for anticancer therapy. By screening a series of pan-inhibitors, we identified pracinostat, a pan-histone deacetylase (HDAC) inhibitor, as a novel MFAD inducer, that exhibited a significant anticancer effect on colorectal cancer (CRC) in vivo and in vitro. Pracinostat increased the expression of cyclin-dependent kinase 5 (CDK5) and induced its acetylation at residue lysine 33, accelerating the formation of complex CDK5/CDK5 regulatory subunit 1 and dynamin-related protein 1 (Drp1)-mediated mitochondrial peripheral fission. CRC cells with high level of CDK5 (CDK5-high) displayed midzone mitochondrial division that was associated with oncogenic phenotype, but treatment with pracinostat led to a lethal increase in the already-elevated level of CDK5 in the CRC cells. Mechanistically, pracinostat switched the scission position from the mitochondrial midzone to the periphery by improving the binding of Drp1 from mitochondrial fission factor (MFF) to mitochondrial fission 1 protein (FIS1). Thus, our results revealed the anticancer mechanism of HDACi pracinostat in CRC via activating CDK5-Drp1 signaling to cause selective MFAD of those CDK5-high tumor cells, which implicates a new paradigm to develop potential therapeutic strategies for CRC treatment.

11.
Mol Vis ; 18: 151-60, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22275806

RESUMEN

OBJECTIVE: To evaluate the antioxidative and anticataractogenic potential effect of ursodeoxycholic acid (UDCA) on selenite-induced cataract in vitro and in vivo. METHODS: Enucleated rat lenses were incubated in M199 medium alone (Group I), with 200 µM selenite (Group II), or with 200 µM selenite and 500 µM UDCA (Group III). Selenite was administered on the third day and UDCA treatment was from the second to the fifth day. The development of cataracts was observed under an inverted microscope. Total antioxidative capabilities (T-AOC), mean activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx), glutathione reductase (GR) and glutathione S-transferase (GST), levels of reduced glutathione (GSH), malondialdehyde (MDA), and total sulfhydryl content were analyzed in lenticular samples. In vivo, cataracts were induced in 12-day-old pups by single subcutaneous injections of sodium selenite. The test groups received 180 mg/kg bodyweight/day of UDCA intraperitoneally on postpartum days 11-16 or 0.5% UDCA drops four times daily on postpartum days 11-25. RESULTS: In vitro, morphological examination of the lenses revealed dense vacuolization and opacification in Group II, minimal vacuolization in 12.5% of Group III, and no opacification in 87.5% of Group III. In Group I, all lenses were clear. UDCA significantly (p<0.05) restored GSH and total sulfhydryl, and decreased MDA levels. T-AOC and the mean activities of the antioxidant enzymes were elevated following treatment with UDCA. In vivo, 0.5% UDCA drops resulted in only 20% nuclear cataract development and 180 mg/kg of UDCA intraperitoneally led to 50% development, compared to 100% in the control group (p<0.05). CONCLUSIONS: UDCA prevents selenite toxicity and cataractogenesis by maintaining antioxidant status and GSH, protecting the sulfhydryl group, and inhibiting lipid peroxidation in lenses.


Asunto(s)
Catarata/inducido químicamente , Catarata/prevención & control , Estrés Oxidativo/efectos de los fármacos , Selenito de Sodio/toxicidad , Ácido Ursodesoxicólico/farmacología , Animales , Antioxidantes/metabolismo , Catarata/enzimología , Catarata/patología , Glutatión/metabolismo , Cristalino/efectos de los fármacos , Cristalino/enzimología , Cristalino/patología , Masculino , Malondialdehído/metabolismo , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/metabolismo
12.
J Fungi (Basel) ; 8(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36354954

RESUMEN

Enzyme production by microorganisms on an industrial scale has demonstrated technical bottlenecks, such as low efficiency in enzyme expression and extracellular secretion. In this study, as a potential tool for overcoming these technical limits, radio-frequency electromagnetic field (RF-EMF) exposure was examined for its possibility to enhance production of an enzyme, α-amylase, in a filamentous fungus, Aspergillus oryzae. The RF-EMF perfectly resonated at 2 GHz with directivity radiation pattern and peak gain of 0.5 dB (0.01 Watt). Total protein concentration and activity of α-amylase measured in media were about 1.5-3-fold higher in the RF-EMF exposed (10 min) sample than control (no RF-EMF) during incubation (the highest increase after 16 h). The level of α-amylase mRNA in cells was approximately 2-8-fold increased 16 and 24 h after RF-EMF exposure for 10 min. An increase in vesicle accumulation within fungal hyphae and the transcription of some genes involved in protein cellular trafficking was observed in RF-EMF-exposed samples. Membrane potential was not changed, but the intracellular Ca2+ level was elevated after RF-EMF exposure. Our results suggest that RF-EMF can increase the extracellular level of fungal total proteins and α-amylase activity and the intracellular level of Ca2+.

13.
Aging (Albany NY) ; 14(9): 4000-4013, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546738

RESUMEN

Administration of non-thermal plasma therapy via the use of plasma-activated medium (PAM) might be a novel strategy for cancer treatment, as it induces apoptosis by increasing reactive oxygen species (ROS) levels. Peroxiredoxin V (PRDX5) scavenges ROS and reactive nitrogen species and is known to regulate several physiological and pathological reactions. However, its role in lung cancer cells exposed to PAM is unknown. Here, we investigated the effect of PRDX5 in PAM-treated A549 lung cancer cells and determined the mechanism underlying its cytotoxicity. Cell culture medium was treated with low temperature plasma at 16.4 kV for 0, 60, 120, or 180 s to develop PAM. PRDX5 was knocked down in A549 cells via transfection with short hairpin RNA targeting PRDX5. Colony formation and wound healing assays, flow cytometry, fluorescence microscopy, and western blotting were performed to detect the effect of PRDX5 knockdown on PAM-treated A549 cells. PAM showed higher cytotoxicity in lung cancer cells than in control cells, downregulated the mitogen-activated protein kinase signaling pathway, and induced apoptosis. PRDX5 knockdown significantly inhibited cell colony formation and migration, increased ROS accumulation, and reduced mitochondrial membrane potential in lung cancer cells. Hence, PRDX5 knockdown combined with PAM treatment represents an effective option for lung cancer treatment.


Asunto(s)
Neoplasias Pulmonares , Peroxirredoxinas , Células A549 , Apoptosis/genética , Línea Celular Tumoral , Medios de Cultivo , Humanos , Neoplasias Pulmonares/patología , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo
14.
J Exp Clin Cancer Res ; 40(1): 301, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34560900

RESUMEN

BACKGROUND: Cell invasion is a hallmark of metastatic cancer, leading to unfavorable clinical outcomes. In this study, we established two highly invasive lung cancer cell models (A549-i8 and H1299-i8) and identified mesoderm-specific transcript (MEST) as a novel invasive regulator of lung cancer. We aim to characterize its biological function and clinical significance in lung cancer metastasis. METHODS: Transwell invasion assay was performed to establish high-invasive lung cancer cell model. Immunohistochemistry (IHC) was used to detect MEST expression in tumor tissues. Mass spectrometry and bioinformatic analyses were used to identify MEST-regulated proteins and binding partners. Co-immunoprecipitation assay was performed to detect the interaction of MEST and VCP. The biological functions of MEST were investigated in vitro and in vivo. Immunofluorescence staining was conducted to explore the colocalization of MEST and VCP. RESULTS: MEST overexpression promoted metastasis of lung cancer cells in vivo and in vitro by activating NF-κB signaling. MEST increased the interaction between VCP and IκBα, which accelerated IκBα degradation and NF-κB activation. Such acceleration was abrogated by VCP silencing, indicating that MEST is an upstream activator of the VCP/IκBα/NF-κB signaling pathway. Furthermore, high expressions of MEST and VCP were associated with poor survival of lung cancer patients. CONCLUSION: Collectively, these results demonstrate that MEST plays an important role in driving invasion and metastasis of lung cancer by interacting with VCP to coordinate the IκBα/NF-κB pathway. Targeting the MEST/VCP/IκBα/NF-κB signaling pathway may be a promising strategy to treat lung cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , FN-kappa B/metabolismo , Proteínas/metabolismo , Proteína que Contiene Valosina/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , FN-kappa B/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Proteínas/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Proteína que Contiene Valosina/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Front Vet Sci ; 8: 726328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746277

RESUMEN

Endometritis is a disease that affects reproductive health in dairy cows and causes serious economic damage to the dairy industry world-wide. Although in recent years, the application of mesenchymal stem cell (MSC) therapy for the treatment of inflammatory diseases has attracted much attention, there are few reports of the use of MSCs in dairy cows. In the present study, our objective was to explore the inhibitory effects of bovine adipose-derived mesenchymal stem cells (bAD-MSCs) on lipopolysaccharide (LPS) induced inflammation in bovine endometrial epithelial cells (bEECs) along with the potential underlying molecular mechanisms. We characterized isolated bAD-MSCs using cell surface marker staining and adipogenic/osteogenic differentiation, and analyzed them using immunofluorescence, flow cytometry (surface marker staining), and adipogenic and osteogenic differentiation. Furthermore, to understand the anti-inflammatory effects of bAD-MSCs on LPS induced bEEC inflammation, we used a bAD-MSC/bEEC co-culture system. The results showed that bAD-MSC treatments could significantly decrease LPS induced bEEC apoptosis and pro-inflammatory cytokine expression levels, such as interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Furthermore, our results showed that bAD-MSC treatments could also significantly downregulate LPS induced p38, IkB-a, and JAK1 phosphorylation and Bax protein expression levels, which are closely related to inflammatory progress and cellular apoptosis in bEECs. Our findings demonstrate that bAD-MSCs play an inhibitory role in LPS induced bEEC inflammation and provide new insights for the clinical therapy of endometritis in dairy cows.

16.
MedComm (2020) ; 2(4): 810-820, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34977878

RESUMEN

Lung adenocarcinoma (LAC) is one of the most common pulmonary adenocarcinomas with a high peak of mortality, and metastasis is the main culprit of LAC deaths. microRNAs play important role in cancer metastasis, and thus are regarded as potential diagnostic and prognostic markers for human cancers. However, many miRNAs exhibit dual roles in diverse cellular contexts. Here, we revealed that hsa-miR-335, a previously reported tumor suppressor, exhibited an oncogenic role in LAC. Overexpression of miR-335 enhanced the abilities of A549 and H1299 cells to invade and migrate by regulating epithelial-mesenchymal transition, while inhibition of miR-335 exhibited an opposite effect in vitro and in vivo. Mechanically, miR-335 inhibited the expression of Copine-1 (CPNE1), an NF-κB suppressor, through interacting with its mRNA 3'UTR, while mutating the binding sites abolished this inhibitory effect. This finding not only highlights the suppressive effect of CPNE1 on cell motility, but also provides new insight into miR-335 in promoting LAC metastasis.

17.
Chin J Integr Med ; 27(8): 570-577, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32946039

RESUMEN

OBJECTIVE: To assess the effect and safety of bloodletting puncture at hand twelve Jing-Well points (HTWPs) in acute stroke patients with conscious disturbance. METHODS: In this multi-center and randomized controlled trial, 360 patients suffered from ischemic or hemorrhagic stroke with conscious disturbance within 48 h from the onset of symptom were divided into bloodletting (180 cases) and control (180 cases) groups using a block randomization. Patients in both groups received routine Western medicine, and patients in the bloodletting group received additional bloodletting puncture at HTWPs on admission immediately before conventional treatment. The primary outcome measure was Glasgow Coma Scale (GCS) score and the secondary outcomes included blood pressure, respiratory rate and pulse rate. All variables were evaluated at baseline (before bloodletting), 0 (after bloodletting immediately), 15, 30, 50 and 80 min post bloodletting. RESULTS: At 80 min post bloodletting, the proportion of patients with improved consciousness in the bloodletting group was greater than the control group (P<0.05). In the separate analysis of moderate consciousness disturbance subgroup, bloodletting therapy benefited ischemic patients, and improved the eye and language response of GCS score at 15, 30, 50, 80 min post bloodletting (P<0.05 or P<0.01). No significant differences were observed regarding the secondary outcomes between two groups (P>0.05). CONCLUSION: The bloodletting puncture at HTWPs was safe and could improve conscious levels of ischemic stroke patients, highlighting a first-aid intervention for acute stroke. (Registration No. ChiCTR-INR-16009530).


Asunto(s)
Venodisección , Accidente Cerebrovascular , Puntos de Acupuntura , Estado de Conciencia , Humanos , Distribución Aleatoria , Accidente Cerebrovascular/terapia , Resultado del Tratamiento
18.
Aging (Albany NY) ; 13(10): 13926-13940, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030134

RESUMEN

Peroxiredoxin II (Prx II) is involved in proliferation, differentiation, and aging in various cell types. However, Prx II-mediated stem cell regulation is poorly understood. Here, dermal mesenchymal stem cells (DMSCs), cell-growth factor-rich conditioned medium from DMSCs (DMSC-CM), and DMSC-derived exosomes (DMSC-Exos) were used to explore the regulatory role of Prx II in DMSC wound healing. Following treatment, wound healing was significantly decelerated in Prx II-/- DMSCs than in Prx II+/+ DMSCs. In vitro stimulation with 10 µM H2O2 significantly increased apoptosis in Prx II-/- DMSCs compared with Prx II+/+ DMSCs. The mRNA expression levels of EGF, b-FGF, PDGF-B, and VEGF did not significantly differ between Prx II-/- and Prx II+/+ DMSCs. Fibroblasts proliferated comparably when treated with Prx II+/+ DMSC-CM or Prx II-/- DMSC-CM. Wound healing was significantly higher in the Prx II-/- DMSC-Exos-treated group than in the Prx II+/+ DMSCs-Exos-treated group. Moreover, microRNA (miR)-21-5p expression levels were lower and miR-221 levels were higher in Prx II-/- DMSCs than in Prx II+/+ DMSCs. Therefore, our results indicate that Prx II accelerated wound healing by protecting DMSCs from reactive oxygen species-induced apoptosis; however, Prx II did not regulate cell/growth factor secretion. Prx II potentially regulates exosome functions via miR-21-5p and miR-221.


Asunto(s)
Dermis/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Peroxirredoxinas/metabolismo , Cicatrización de Heridas , Animales , Apoptosis , Medios de Cultivo Condicionados/farmacología , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Exosomas/ultraestructura , Eliminación de Gen , Peróxido de Hidrógeno/toxicidad , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cicatrización de Heridas/genética
19.
Am J Cancer Res ; 11(7): 3575-3593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354861

RESUMEN

Human hepatocellular carcinoma (HCC) is the most frequent cancer worldwide with a poor prognosis. Tumor-specific pyruvate kinase M2 (PKM2) is essential for cancer metabolism and tumorigenesis. Shikonin, a specific inhibitor of PKM2, but not PKM1, exhibits significant anticancer effect in HCC, and was deemed as a promising drug for cancer therapy. However, shikonin-mediated bypass signaling in HCC remained unclear. Here, we performed forward/reverse stable isotope labeling with amino acids in cell culture (SILAC)-based proteomics to identify the early molecular events controlled by shikonin. We demonstrated for the first time that shikonin could induce the nuclear translocation of PKM2 for recruiting Nrf2, and transcriptionally activated Nrf2 downstream target gene BAG3, therefore increasing protective effect to sustain cell survival. Knockdown of BAG3 by si-RNA significantly potentiated the anticancer effect of shikonin. These findings provided the first evidence of a new noncanonical function of inhibited PKM2 could act as a transcriptional coactivator of Nrf2 in cancer survival, highlight that shikonin in combined with BAG3 inhibitor could be a promising therapeutic strategy for HCC therapy.

20.
Comput Struct Biotechnol J ; 18: 3936-3946, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335690

RESUMEN

Rab5 is a small GTPase that plays a crucial role in oncogenic signal transduction, which was considered as an attractive target for cancer therapy. Rapid GDP/GTP exchange in the packet of Rab5 sustains its high activity for promoting cancer progression. However, Rab5 currently remains undruggable due to the lack of specific inhibitor. Herein, we reported the discovery of a novel Rab5 inhibitor, neoandrographolide (NAP), by using high-throughput virtual screening with a natural product library containing 7459 compounds, which can occupy the surface groove of Rab5, competing with GDP/GTP for the binding. Ser34 is the most important residue in the groove of Rab5, as it forms most hydrogen-bond interactions with GDP/GTP or NAP, and in silico mutation of Ser34 decreased the stabilization of Rab5. Moreover, fluorescence titration experiment and isothermal titration calorimetry (ITC) assay revealed a direct binding between NAP and Rab5. Biochemical and cell-based assays showed that NAP treatment not only diminished the activity of Rab5, but also suppressed cell growth of cancer cell. This finding firstly identifies NAP as a novel inhibitor of Rab5, which directly binds with Rab5 by occupying the GDP/GTP binding groove to suppress its functions, highlighting a great potential of NAP to be developed as a chemotherapeutic agent in cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA