Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 107: 117760, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38762978

RESUMEN

Oncolytic peptides represented potential novel candidates for anticancer treatments especially drug-resistant cancer cell lines. One of the most promising and extensively studied is LTX-315, which is considered as the first in class oncolytic peptide and has entered phase I/II clinical trials. Nevertheless, the shortcomings including poor proteolytic stability, moderate anticancer durability and high synthesis costs may hinder the widespread clinical applications of LTX-315. In order to reduce the synthesis costs, as well as develop derivatives possessing both high protease-stability and durable anticancer efficiency, twenty LTX-315-based derived-peptides were designed and efficiently synthesized. Especially, through solid-phase S-alkylation, as well as the optimized peptide cleavage condition, the derived peptides could be prepared with drastically reduced synthesis cost. The in vitro anticancer efficiency, serum stability, anticancer durability, anti-migration activity, and hemolysis effect were systematically investigated. It was found that derived peptide MS-13 exhibited comparable anticancer efficiency and durability to those of LTX-315. Strikingly, the D-type peptide MS-20, which is the enantiomer of MS-13, was demonstrated to possess significantly high proteolytic stability and sustained anticancer durability. In general, the cost-effective synthesis and stability-guided structural optimizations were conducted on LTX-315, affording the highly hydrolysis resistant MS-20 which possessed durable anticancer activity. Meanwhile, this study also provided a reliable reference for the future optimization of anticancer peptides through the solid-phase S-alkylation and L-type to D-type amino acid substitutions.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Movimiento Celular/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Hemólisis/efectos de los fármacos , Oligopéptidos
2.
J Periodontal Res ; 59(1): 174-186, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957805

RESUMEN

BACKGROUND: Periodontal ligament cells (PDLCs) are key mechanosensory cells involved in extracellular matrix (ECM) remodeling during orthodontic tooth movement (OTM). Mechanical force changes the ECM components, such as collagens and matrix metalloproteinases. However, the associations between the changes in ECM molecules and cellular dynamics during OTM remain largely uncharacterized. OBJECTIVES: To investigate the influence of mechanical force on the morphology and migration of PDLCs and explore the interaction between ECM remodeling and cellular dynamics, including the detailed mechanisms involved. METHODS: Human PDLCs (hPDLCs) were subjected to a static mechanical compression to mimic the compression state of OTM in vitro. A mouse OTM model was used to mimic the OTM procedure in vivo. The migration of hPDLCs was compared by wound healing and transwell migration assays. Moreover, expression levels of ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9) and fibronectin (FN) in hPDLCs were determined via western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assays. Expression levels of ADAMTS9 and FN in mice were assessed via immunohistochemical staining. Additionally, the relative expression of long non-coding RNA (lncRNA) ADAMTS9-antisense RNA 2 (ADAMTS9-AS2) was assessed via quantitative real-time polymerase chain reaction. ADAMTS9-AS2 knockdown was performed to confirm its function in hPDLCs. RESULTS: Mechanical compression induced changes in the morphology of hPDLCs. It also promoted migration and simultaneous upregulation of FN and downregulation of ADAMTS9, a fibronectinase. The mouse OTM model showed the same expression patterns of the two proteins on the compression side of the periodontium of the moved teeth. RNA sequencing revealed that lncRNA ADAMTS9-AS2 expression was significantly upregulated in hPDLCs under mechanical compression. After knocking down ADAMTS9-AS2, hPDLCs migration was significantly inhibited. ADAMTS9 expression was increased as FN expression decreased compared to that in the control group. Moreover, knockdown of ADAMTS9-AS2 reduced the effect of mechanical compression on hPDLCs migration and reversed the expression change of ADAMTS9 and FN. RNA immunoprecipitation revealed direct binding between ADAMTS9-AS2 and ADAMTS9 protein. CONCLUSION: Our study suggests that mechanical compression induces the expression of ADAMTS9-AS2, which directly binds to ADAMTS9 and inhibits its function, leading to the promotion of downstream FN expression and ECM remodeling to facilitate hPDLCs migration and maintain the stability of the periodontium.


Asunto(s)
ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ligamento Periodontal/metabolismo , Proteína ADAMTS9/genética , Proteína ADAMTS9/metabolismo , Fibronectinas , Movimiento Celular , Proliferación Celular/genética
3.
BMC Oral Health ; 22(1): 508, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397068

RESUMEN

BACKGROUND: Previous studies of pulpal blood flow (PBF) changes in anterior teeth have been limited in the early phase of orthodontic treatment; less is known about the blood supply of anterior teeth in bimaxillary protrusion patients after orthodontic retraction. METHODS: Fifty bimaxillary protrusion patients (25 orthodontic patients ready for debonding and 25 non-orthodontic patients) were selected as study participants. The PBF of maxillary and mandibular anterior teeth were measured using laser Doppler flowmetry. For orthodontic patients, the PBF was measured at 1 day (T1), 1 month (T2), and 3 months (T3) after fixed appliance removal. Non-orthodontic patient PBF was measured as a control. Cone-beam computed tomography (CBCT) examinations before and after orthodontic treatment were performed for orthodontic patients to measure the root resorption. The anterior teeth in orthodontic group were further divided into subgroups according to root resorption and patient age. RESULTS: At T1 and T3, PBF changes did not differ significantly between the orthodontic and non-orthodontic groups. Maxillary lateral incisor, maxillary central incisor, and mandibular lateral incisor PBFs at T2 were significantly higher in the orthodontic group (P = 0.048, P = 0.04, and P = 0.021). No significant difference in PBF was found between the root resorption and non-resorption subgroups at any time point. Adolescent patients showed a higher PBF in the maxillary lateral incisor at T2 (12.23 ± 3.48) relative to that at T1 (9.10 ± 3.76) and T3 (9.81 ± 2.80) with statistically significant difference (P = 0.020). CONCLUSION: For bimaxillary protrusion patients with four premolars extraction, PBF in the maxillary anterior teeth increased transiently after orthodontic appliance removal and then returned to non-orthodontic levels 3 months later. This effect was more pronounced in adolescents. The PBF of anterior teeth after orthodontic retraction may not be influenced by root resorption.


Asunto(s)
Pulpa Dental , Maloclusión , Resorción Radicular , Adolescente , Humanos , Pulpa Dental/diagnóstico por imagen , Pulpa Dental/irrigación sanguínea , Incisivo/diagnóstico por imagen , Maxilar/diagnóstico por imagen , Estudios Prospectivos
4.
Adv Sci (Weinh) ; : e2402529, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101239

RESUMEN

Treatment strategies for hard tissue defects aim to establish a mineralized microenvironment that facilitates tissue remodeling. As a mineralized tissue, cementum shares a similar structure with bone and exhibits an excellent capacity to resist resorption under compression. Macrophages are crucial for mineralized remodeling; however, their functional alterations in the microenvironment of cementum remain poorly understood. Therefore, this study explores the mechanisms by which cementum resists resorption under compression and the regulatory roles of cementoblasts in macrophage functions. As a result, extracellular vesicles from compression-loaded cementoblasts (Comp-EVs) promote macrophage M2 polarization and enhance the clearance of apoptotic cells (efferocytosis) by 2- to 3-fold. Local injection of Comp-EVs relieves cementum destruction in mouse root resorption model by activating the tissue repair function of macrophages. Moreover, Comp-EV-loaded hydrogels achieve significant bone healing in calvarial bone defect. Unexpectedly, under compression, EV secretion in cementoblasts is reduced by half. RNA-Seq analysis and verification reveal that Rab35 expression decreases by 60% under compression, thereby hampering the release of EVs. Rab35 overexpression is proposed as a modification of cementoblasts to boost the yield of Comp-EVs. Collectively, Comp-EVs activate the repair function of macrophages, which will be a potential therapeutic strategy for hard tissue repair and regeneration.

5.
J Med Chem ; 67(5): 3885-3908, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38278140

RESUMEN

Oncolytic peptides represent promising novel candidates for anticancer treatments. In our efforts to develop oncolytic peptides possessing both high protease stability and durable anticancer efficiency, three rounds of optimization were conducted on the first-in-class oncolytic peptide LTX-315. The robust synthetic method, in vitro and in vivo anticancer activity, and anticancer mechanism were investigated. The D-type peptides represented by FXY-12 possessed significantly improved proteolytic stability and sustained anticancer efficiency. Strikingly, the novel hybrid peptide FXY-30, containing one FXY-12 and two camptothecin moieties, exhibited the most potent in vitro and in vivo anticancer activities. The mechanism explorations indicated that FXY-30 exhibited rapid membranolytic effects and induced severe DNA double-strand breaks to trigger cell apoptosis. Collectively, this study not only established robust strategies to improve the stability and anticancer potential of oncolytic peptides but also provided valuable references for the future development of D-type peptides-based hybrid anticancer chemotherapeutics.


Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Oligopéptidos/farmacología , Péptidos/farmacología , Apoptosis , Péptido Hidrolasas , Línea Celular Tumoral
6.
Head Face Med ; 18(1): 31, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064714

RESUMEN

BACKGROUND: Previous studies have reported inconsistent effects of premolar extraction on the oropharynx and hyoid bones. Currently, no strong evidence is available regarding the effect of extraction on upper airway size. Hence, the aim of this study was to analyse the effects of first premolar extraction on the oropharynx and hyoid bone positions in female adult patients, and further explored differences in oropharynx and hyoid bone changes among skeletal patterns. METHODS: The study population included 40 female adult patients who did not undergo extraction and 120 female adult patients who underwent extraction of four premolars; the including patients had four distinct sagittal and vertical skeletal patterns. Cone-beam computed tomography was performed before (T0) and after (T1) orthodontic treatment. Eight oropharynx variables and five hyoid bone variables were measured using Dolphin 3D Imaging software. Paired and independent t-tests were used to analyse measurements between timepoints and groups, respectively. RESULTS: The oropharynx volume increased significantly in the extraction group; changes did not differ significantly between extraction and non-extraction groups. Oropharynx variables did not differ significantly at T0 among the four skeletal pattern groups. After orthodontic extraction treatment, the oropharynx volume increased significantly in the class I-norm and class I-hyper subgroups, but not in the class II-norm and class II-hyper subgroups. Significant increases were observed in the oropharynx volume and most constricted axial area from T0 to T1 in the moderate retraction group, but not in the maximum retraction group. Extraction patients exhibited significant posterior movement of the hyoid, particularly among maximum retraction patients. CONCLUSIONS: In female adult patients, first premolar extraction tends to increase the oropharynx size and cause posterior movement of the hyoid bone, particularly in skeletal class I patients. For skeletal class II and hyperdivergent patients with a narrow oropharynx, first premolar extraction does not negatively influence oropharynx size or hyoid bone position. The differences of oropharyngeal changes between moderate retraction patients and maximum retraction patients were not significant.


Asunto(s)
Diente Premolar , Huesos , Tomografía Computarizada de Haz Cónico , Hueso Hioides , Orofaringe , Extracción Dental , Adulto , Diente Premolar/diagnóstico por imagen , Diente Premolar/cirugía , Huesos/anatomía & histología , Huesos/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Femenino , Humanos , Hueso Hioides/diagnóstico por imagen , Orofaringe/diagnóstico por imagen , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA