Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Med Chem ; 244: 114848, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36274277

RESUMEN

Myocardial ischemia/reperfusion (MI/R) injury is still the huge unmet medical need without effective therapy in clinic. It is critical to develop pharmacological intervention to scavenge ROS and inhibit NLRP3 activation to have a double benefit against MI/R injury. Cinnamamide derivatives have been demonstrated to possess anti-oxidative and anti-inflammatory activities. Previously, we have reported that a cinnamamide derivative 2 exerts excellent cardioprotective effect via mediation of intracellular oxidative stress via Nrf2 up-regulation against MI/R. In the present study, seventeen compounds have been optimized using cinnamamide-barbiturate hybrid 2 as the lead compound and their cardioprotective activities against MI/R were further determined in vitro and in vivo. Among them, compound 7 showed the most potent cardioprotective effect and low cytotoxicity. While cardiomyocytes were invased by hydrogen peroxide, compound 7 exhibited more excellent cardioprotective effect than that of luteolin and metoprolol, the positive control employed in the present study, as demonstrated by dramatically elevated cell survival rate and decreased LDH leakage rate. Moreover, compound 7 markedly inhibited cardiac expressions of inflammasome activation and pro-inflammatory cytokines release (i.e. NLRP3, IL-1ß, IL-18), simultaneouly increasing endogenous antioxidative proteins (i.e. Nrf2, HO-1 and SOD) in vitro. In the rat MI/R model, compound 7 pretreatment profoundly reduced cardiac infarct size in MI/R rats and reversed abnormal changes in myocardial enzymes and lipid peroxidation levels in heart tissues. Mechanistically, compound 7 revealed significant cardioprotective effects by inhibiting NLRP3 and its downstream inflammatory chemokine IL-1ß, as well as up-regulating Nrf2 in vivo. Furthermore, at the active site of the co-crystal of NLRP3 and Nrf2, compound 7 exhibited higher binding force in the molecular docking study, which was consistent with the in vitro results. Therefore, compound 7 is expected to be a potential cardioprotective agent possessing dual anti-inflammatory and anti-oxidative activities. Our work provides an important therapeutic strategy for the treatment of ischemic-reperfused heart disease.


Asunto(s)
Antiinflamatorios , Cardiotónicos , Cinamatos , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Animales , Ratas , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Cardiotónicos/química , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Simulación del Acoplamiento Molecular , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Cinamatos/química , Cinamatos/farmacología , Cinamatos/uso terapéutico
2.
Acta Physiologica Sinica ; (6): 172-182, 2017.
Artículo en Zh | WPRIM | ID: wpr-348286

RESUMEN

The present study is designed to explore the role of plasma cells in the change of protein C system (PCS) in ulcerative colitis (UC). Dextran sulfate sodium (DSS, 4% in concentration) was used to induce mouse UC model. The plasma cells and the type of immune complex in colon were observed by immunofluorescence. The amount and type of plasma cells separated from colonic mucosal lamina propria were detected by flow cytometry using anti-CD54CD38and IgA/M/G antibodies, respectively. After stimulation of macrophages by IgG type immune complex, TNF-α and IL-6 levels were evaluated by ELISA. After co-incubation of microvascular endothelial cells with TNF-α or IL-6, the expressions of endothelial protein C receptor (EPCR) and thrombomodulin (TM), and the activity of activated protein C (APC) were examined. As the results showed, the IgG type plasma cells infiltration and the quantity of IgG type immune complex were increased in DSS group in comparison with control group. After incubation with IgG type immune complex, the levels of TNF-α and IL-6 in the supernatant of macrophages were increased (P < 0.01) in a concentration-dependent manner. Meanwhile, after incubation with TNF-α or IL-6, the expressions of EPCR and TM in the microvascular endothelial cells were decreased (P < 0.05 or P < 0.01), while the activity of APC was reduced (P < 0.05 or P < 0.01). These results suggested that the quantity of IgG type plasma cells increases in UC and forms immune complexes, which affect the secretion of cytokines from macrophage, thereby affecting the function of endothelial cells and finally inhibiting PCS in UC. Therefore, plasma cell may be a novel target for the treatment of UC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA