Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2400525121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042683

RESUMEN

Per- and polyfluoroalkyl substances (PFAS), particularly the perfluorinated ones, are recalcitrant to biodegradation. By integrating an enrichment culture of reductive defluorination with biocompatible electrodes for the electrochemical process, a deeper defluorination of a C6-perfluorinated unsaturated PFAS was achieved compared to the biological or electrochemical system alone. Two synergies in the bioelectrochemical system were identified: i) The in-series microbial-electrochemical defluorination and ii) the electrochemically enabled microbial defluorination of intermediates. These synergies at the material-microbe interfaces surpassed the limitation of microbial defluorination and further turned the biotransformation end products into less fluorinated products, which could be less toxic and more biodegradable in the environment. This material-microbe hybrid system brings opportunities in the bioremediation of PFAS driven by renewable electricity and warrants future research on mechanistic understanding of defluorinating and electroactive microorganisms at the material-microbe interface for system optimizations.


Asunto(s)
Biodegradación Ambiental , Anaerobiosis , Halogenación , Electrodos/microbiología , Fluorocarburos/metabolismo , Fluorocarburos/química , Técnicas Electroquímicas/métodos , Bacterias/metabolismo
2.
Environ Sci Technol ; 57(7): 2749-2757, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36745632

RESUMEN

Graphitic carbon nitride (g-C3N4) nanomaterials hold great promise in diverse applications; however, their stability in engineering systems and transformation in nature are largely underexplored. We evaluated the stability, aging, and environmental impact of g-C3N4 nanosheets under the attack of free chlorine and reactive chlorine species (RCS), a widely used oxidant/disinfectant and a class of ubiquitous radical species, respectively. g-C3N4 nanosheets were slowly oxidized by free chlorine even at a high concentration of 200-1200 mg L-1, but they decomposed rapidly when ClO· and/or Cl2•- were the key oxidants. Though Cl2•- and ClO· are considered weaker oxidants in previous studies due to their lower reduction potentials and slower reaction kinetics than ·OH and Cl·, our study highlighted that their electrophilic attack efficacy on g-C3N4 nanosheets was on par with ·OH and much higher than Cl·. A trace level of covalently bonded Cl (0.28-0.55 at%) was introduced to g-C3N4 nanosheets after free chlorine and RCS oxidation. Our study elucidates the environmental fate and transformation of g-C3N4 nanosheets, particularly under the oxidation of chlorine-containing species, and it also provides guidelines for designing reactive, robust, and safe nanomaterials for engineering applications.


Asunto(s)
Grafito , Nanoestructuras , Cloro , Oxidantes , Cloruros
3.
Environ Sci Technol ; 56(6): 3699-3709, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35226468

RESUMEN

The addition of iodide (I-) in the UV/sulfite system (UV/S) significantly accelerated the reductive degradation of perfluorosulfonates (PFSAs, CnF2n+1SO3-) and perfluorocarboxylates (PFCAs, CnF2n+1COO-). Using the highly recalcitrant perfluorobutane sulfonate (C4F9SO3-) as a probe, we optimized the UV/sulfite + iodide system (UV/S + I) to degrade n = 1-7 PFCAs and n = 4, 6, 8 PFSAs. In general, the kinetics of per- and polyfluoroalkyl substance (PFAS) decay, defluorination, and transformation product formations in UV/S + I were up to three times faster than those in UV/S. Both systems achieve a similar maximum defluorination. The enhanced reaction rates and optimized photoreactor settings lowered the EE/O for PFCA degradation below 1.5 kW h m-3. The relatively high quantum yield of eaq- from I- made the availability of hydrated electrons (eaq-) in UV/S + I and UV/I two times greater than that in UV/S. Meanwhile, the rapid scavenging of reactive iodine species by SO32- made the lifetime of eaq- in UV/S + I eight times longer than that in UV/I. The addition of I- also substantially enhanced SO32- utilization in treating concentrated PFAS. The optimized UV/S + I system achieved >99.7% removal of most PFSAs and PFCAs and >90% overall defluorination in a synthetic solution of concentrated PFAS mixtures and NaCl. We extended the discussion over molecular transformation mechanisms, development of PFAS degradation technologies, and the fate of iodine species.


Asunto(s)
Fluorocarburos , Yodo , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Yoduros , Sulfitos , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Technol ; 56(8): 4894-4904, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35373561

RESUMEN

The recently discovered microbial reductive defluorination of two C6 branched and unsaturated fluorinated carboxylic acids (FCAs) provided valuable insights into the environmental fate of per- and polyfluoroalkyl substances (PFASs) and potential bioremediation strategies. However, a systematic investigation is needed to further demonstrate the role of C═C double bonds in the biodegradability of unsaturated PFASs. Here, we examined the structure-biodegradability relationships of 13 FCAs, including nine commercially available unsaturated FCAs and four structurally similar saturated ones, in an anaerobic defluorinating enrichment and an activated sludge community. The anaerobic and aerobic transformation/defluorination pathways were elucidated. The results showed that under anaerobic conditions, the α,ß-unsaturation is crucial for FCA biotransformation via reductive defluorination and/or hydrogenation pathways. With sp2 C-F bonds being substituted by C-H bonds, the reductive defluorination became less favorable than hydrogenation. Moreover, for the first time, we reported enhanced degradability and defluorination capability of specific unsaturated FCA structures with trifluoromethyl (-CF3) branches at the α/ß-carbon. Such FCA structures can undergo anaerobic abiotic defluorination in the presence of reducing agents and significant aerobic microbial defluorination. Given the diverse applications and emerging concerns of fluorochemicals, this work not only advances the fundamental understanding of the fate of unsaturated PFASs in natural and engineered environments but also may provide insights into the design of readily degradable fluorinated alternatives to existing PFAS compounds.


Asunto(s)
Ácidos Carboxílicos , Fluorocarburos , Anaerobiosis , Biodegradación Ambiental , Fluorocarburos/química , Aguas del Alcantarillado
5.
Environ Sci Technol ; 55(20): 14146-14155, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34618445

RESUMEN

Omega-hydroperfluorocarboxylates (ω-HPFCAs, HCF2-(CF2)n-1-COO-) are commercially available in bulk quantities and have been applied in agrochemicals, fluoropolymer production, and semiconductor coating. In this study, we used kinetic measurements, theoretical calculations, model compound experiments, and transformation product analyses to reveal novel mechanistic insights into the reductive and oxidative transformation of ω-HPFCAs. Like perfluorocarboxylates (PFCAs, CF3-(CF2)n-1-COO-), the direct linkage between HCnF2n- and -COO- enables facile degradation under UV/sulfite treatment. To our surprise, the presence of the H atom on the remote carbon makes ω-HPFCAs more susceptible than PFCAs to decarboxylation (i.e., yielding shorter-chain ω-HPFCAs) and less susceptible to hydrodefluorination (i.e., H/F exchange). Like fluorotelomer carboxylates (FTCAs, CnF2n+1-CH2CH2-COO-), the C-H bond in HCF2-(CF2)n-1-COO- allows hydroxyl radical oxidation and limited defluorination. While FTCAs yielded PFCAs in all chain lengths, ω-HPFCAs only yielded -OOC-(CF2)n-1-COO- (major) and -OOC-(CF2)n-2-COO- (minor) due to the unfavorable ß-fragmentation pathway that shortens the fluoroalkyl chain. We also compared two treatment sequences-UV/sulfite followed by heat/persulfate and the reverse-toward complete defluorination of ω-HPFCAs. The findings will benefit the treatment and monitoring of H-containing per- and polyfluoroalkyl substance (PFAS) pollutants as well as the design of future fluorochemicals.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Ácidos Carboxílicos , Radical Hidroxilo , Oxidación-Reducción
6.
Environ Sci Technol ; 55(10): 7052-7062, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33950686

RESUMEN

The UV-sulfite reductive treatment using hydrated electrons (eaq-) is a promising technology for destroying perfluorocarboxylates (PFCAs, CnF2n+1COO-) in any chain length. However, the C-H bonds formed in the transformation products strengthen the residual C-F bonds and thus prevent complete defluorination. Reductive treatments of fluorotelomer carboxylates (FTCAs, CnF2n+1-CH2CH2-COO-) and sulfonates (FTSAs, CnF2n+1-CH2CH2-SO3-) are also sluggish because the ethylene linker separates the fluoroalkyl chain from the end functional group. In this work, we used oxidation (Ox) with hydroxyl radicals (HO•) to convert FTCAs and FTSAs to a mixture of PFCAs. This process also cleaved 35-95% of C-F bonds depending on the fluoroalkyl chain length. We probed the stoichiometry and mechanism for the oxidative defluorination of fluorotelomers. The subsequent reduction (Red) with UV-sulfite achieved deep defluorination of the PFCA mixture for up to 90%. The following use of HO• to oxidize the H-rich residues led to the cleavage of the remaining C-F bonds. We examined the efficacy of integrated oxidative and reductive treatment of n = 1-8 PFCAs, n = 4,6,8 perfluorosulfonates (PFSAs, CnF2n+1-SO3-), n = 1-8 FTCAs, and n = 4,6,8 FTSAs. A majority of structures yielded near-quantitative overall defluorination (97-103%), except for n = 7,8 fluorotelomers (85-89%), n = 4 PFSA (94%), and n = 4 FTSA (93%). The results show the feasibility of complete defluorination of legacy PFAS pollutants and will advance both remediation technology design and water sample analysis.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Contaminantes Químicos del Agua , Alcanosulfonatos , Ácidos Carboxílicos , Oxidación-Reducción
7.
Environ Sci Technol ; 54(22): 14393-14402, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33121241

RESUMEN

The C-F bond is one of the strongest single bonds in nature. Although microbial reductive dehalogenation is well known for the other organohalides, no microbial reductive defluorination has been documented for perfluorinated compounds except for a single, nonreproducible study on trifluoroacetate. Here, we report on C-F bond cleavage in two C6 per- and polyfluorinated compounds via reductive defluorination by an organohalide-respiring microbial community. The reductive defluorination was demonstrated by the release of F- and the formation of the corresponding product when lactate was the electron donor, and the fluorinated compound was the sole electron acceptor. The major dechlorinating species in the seed culture, Dehalococcoides, were not responsible for the defluorination as no growth of Dehalococcoides or active expression of Dehalococcoides-reductive dehalogenases was observed. It suggests that minor phylogenetic groups in the community might be responsible for the reductive defluorination. These findings expand our fundamental knowledge of microbial reductive dehalogenation and warrant further studies on the enrichment, identification, and isolation of responsible microorganisms and enzymes. Given the wide use and emerging concerns of fluorinated organics (e.g., per- and polyfluoroalkyl substances), particularly the perfluorinated ones, the discovery of microbial defluorination under common anaerobic conditions may provide valuable insights into the environmental fate and potential bioremediation strategies of these notorious contaminants.


Asunto(s)
Chloroflexi , Biodegradación Ambiental , Filogenia
8.
Environ Sci Technol ; 54(4): 2489-2499, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31999101

RESUMEN

This study explores structure-reactivity relationships for the degradation of emerging perfluoroalkyl ether carboxylic acid (PFECA) pollutants with ultraviolet-generated hydrated electrons (eaq-). The rate and extent of PFECA degradation depend on both the branching extent and the chain length of oxygen-segregated fluoroalkyl moieties. Kinetic measurements, theoretical calculations, and transformation product analyses provide a comprehensive understanding of the PFECA degradation mechanisms and pathways. In comparison to traditional full-carbon-chain perfluorocarboxylic acids, the distinct degradation behavior of PFECAs is attributed to their ether structures. The ether oxygen atoms increase the bond dissociation energy of the C-F bonds on the adjacent -CF2- moieties. This impact reduces the formation of H/F-exchanged polyfluorinated products that are recalcitrant to reductive defluorination. Instead, the cleavage of ether C-O bonds generates unstable perfluoroalcohols and thus promotes deep defluorination of short fluoroalkyl moieties. In comparison to linear PFECAs, branched PFECAs have a higher tendency of H/F exchange on the tertiary carbon and thus lower percentages of defluorination. These findings provide mechanistic insights for an improved design and efficient degradation of fluorochemicals.


Asunto(s)
Ácidos Carboxílicos , Fluorocarburos , Electrones , Éter , Éteres
9.
Environ Sci Technol ; 53(7): 3718-3728, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30874441

RESUMEN

This study investigates critical structure-reactivity relationships within 34 representative per- and polyfluoroalkyl substances (PFASs) undergoing defluorination with UV-generated hydrated electrons. While C nF2 n+1-COO- with variable fluoroalkyl chain lengths ( n = 2 to 10) exhibited a similar rate and extent of parent compound decay and defluorination, the reactions of telomeric C nF2 n+1-CH2CH2-COO- and C nF2 n+1-SO3- showed an apparent dependence on the length of the fluoroalkyl chain. Cross comparison of experimental results, including different rates of decay and defluorination of specific PFAS categories, the incomplete defluorination from most PFAS structures, and the surprising 100% defluorination from CF3COO-, leads to the elucidation of new mechanistic insights into PFAS degradation. Theoretical calculations on the C-F bond dissociation energies (BDEs) of all PFAS structures reveal strong relationships among (i) the rate and extent of decay and defluorination, (ii) head functional groups, (iii) fluoroalkyl chain length, and (iv) the position and number of C-F bonds with low BDEs. These relationships are further supported by the spontaneous cleavage of specific bonds during calculated geometry optimization of PFAS structures bearing one extra electron, and by the product analyses with high-resolution mass spectrometry. Multiple reaction pathways, including H/F exchange, dissociation of terminal functional groups, and decarboxylation-triggered HF elimination and hydrolysis, result in the formation of variable defluorination products. The selectivity and ease of C-F bond cleavage highly depends on molecular structures. These findings provide critical information for developing PFAS treatment processes and technologies to destruct a wide scope of PFAS pollutants and for designing fluorochemical formulations to avoid releasing recalcitrant PFASs into the environment.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Electrones , Espectrometría de Masas
10.
Environ Sci Technol ; 53(15): 8695-8705, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31294971

RESUMEN

The recently discovered complete ammonia-oxidizing (comammox) bacteria occur in various environments, including wastewater treatment plants. To better understand their role in micropollutant biotransformation in comparison with ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), we investigated the biotransformation capability of Nitrospira inopinata (the only comammox isolate) for 17 micropollutants. Asulam, fenhexamid, mianserin, and ranitidine were biotransformed by N. inopinata, Nitrososphaera gargensis (AOA), and Nitrosomonas nitrosa Nm90 (AOB). More distinctively, carbendazim, a benzimidazole fungicide, was exclusively biotransformed by N. inopinata. The biotransformation of carbendazim only occurred when N. inopinata was supplied with ammonia but not nitrite as the energy source. The exclusive biotransformation of carbendazim by N. inopinata was likely enabled by an enhanced substrate promiscuity of its unique AMO and its much higher substrate (for ammonia) affinity compared with the other two ammonia oxidizers. One major plausible transformation product (TP) of carbendazim is a hydroxylated form at the aromatic ring, which is consistent with the function of AMO. These findings provide fundamental knowledge on the micropollutant degradation potential of a comammox bacterium to better understand the fate of micropollutants in nitrifying environments.


Asunto(s)
Nitrificación , Microbiología del Suelo , Amoníaco , Archaea , Bacterias , Biotransformación , Oxidación-Reducción , Filogenia
11.
Environ Sci Technol ; 52(16): 9196-9205, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30004677

RESUMEN

Biotransformation of various micropollutants (MPs) has been found to be positively correlated with nitrification in activated sludge communities. To further elucidate the roles played by ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), we investigated the biotransformation capabilities of an NOB pure culture ( Nitrobacter sp.) and an AOB ( Nitrosomonas europaea)/NOB ( Nitrobacter sp.) coculture for 15 MPs, whose biotransformation was reported previously to be associated with nitrification. The NOB pure culture did not biotransform any investigated MP, whereas the AOB/NOB coculture was capable of biotransforming six MPs (i.e., asulam, bezafibrate, fenhexamid, furosemide, indomethacin, and rufinamide). Transformation products (TPs) were identified, and tentative structures were proposed. Inhibition studies with octyne, an ammonia monooxygenase (AMO) inhibitor, suggested that AMO was the responsible enzyme for MP transformation that occurred cometabolically. For the first time, hydroxylamine, a key intermediate of all aerobic ammonia oxidizers, was found to react with several MPs at concentrations typically occurring in AOB batch cultures. All of these MPs were also biotransformed by the AOB/NOB coculture. Moreover, the same asulam TPs were detected in both biotransformation and hydroxylamine-treated abiotic transformation experiments, whereas rufinamide TPs formed from biological transformation were not detected during hydroxylamine-mediated abiotic transformation, which was consistent with the inability of rufinamide abiotic transformation by hydroxylamine. Thus, in addition to cometabolism likely carried out by AMO, an abiotic transformation route indirectly mediated by AMO might also contribute to MP biotransformation by AOB.


Asunto(s)
Amoníaco , Nitritos , Reactores Biológicos , Biotransformación , Técnicas de Cocultivo , Hidroxilamina , Hidroxilaminas , Oxidación-Reducción , Oxidorreductasas
12.
Water Res ; 266: 122431, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39298898

RESUMEN

Trace organic contaminants (TrOCs) are omnipresent in wastewater treatment plants (WWTPs), yet, their removal during wastewater treatment is oftentimes incomplete and underlying biotransformation mechanisms are not fully understood. In this study, we elucidate how different factors, including pre-exposure levels and duration, influence microbial adaptation towards catabolic TrOC biodegradation and its potential role in biological wastewater treatment. Four sequencing batch reactors (SBRs) were operated in parallel in three succeeding phases, adding and removing a selection of 26 TrOCs at different concentration levels. After each phase of SBR operation, a series of batch experiments was conducted to monitor biotransformation kinetics of those same TrOCs across various spike concentrations. For half of our test TrOCs, we detected increased biotransformation in sludge pre-exposed to TrOC concentrations ≥5 µg L-1 over a 30-day period, with most significant differences observed for the insect repellent DEET and the artificial sweetener saccharin. Accordingly, 16S rRNA amplicon sequencing revealed enrichment of taxa that have previously been linked to catabolic biodegradation of several test TrOCs, e.g., Bosea sp. and Shinella sp. for acesulfame degradation, and Pseudomonas sp. for caffeine, cyclamate, DEET, metformin, paracetamol, and isoproturon degradation. We further conducted shotgun metagenomics to query for gene products previously reported to be involved in the TrOCs' biodegradation pathways. In the future, directed microbial adaptation may be a solution to improve bioremediation of TrOCs in contaminated environments or in WWTPs.


Asunto(s)
Biodegradación Ambiental , Aguas del Alcantarillado , Contaminantes Químicos del Agua , Aguas del Alcantarillado/microbiología , Contaminantes Químicos del Agua/metabolismo , Reactores Biológicos , Eliminación de Residuos Líquidos , ARN Ribosómico 16S/genética , Aguas Residuales
13.
Water Res ; 256: 121593, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631239

RESUMEN

Organic contaminants enter aquatic ecosystems from various sources, including wastewater treatment plant effluent. Freshwater biofilms play a major role in the removal of organic contaminants from receiving water bodies, but knowledge of the molecular mechanisms driving contaminant biotransformations in complex stream biofilm (periphyton) communities remains limited. Previously, we demonstrated that biofilms in experimental flume systems grown at higher ratios of treated wastewater (WW) to stream water displayed an increased biotransformation potential for a number of organic contaminants. We identified a positive correlation between WW percentage and biofilm biotransformation rates for the widely-used insect repellent, N,N-diethyl-meta-toluamide (DEET) and a number of other wastewater-borne contaminants with hydrolyzable moieties. Here, we conducted deep shotgun sequencing of flume biofilms and identified a positive correlation between WW percentage and metagenomic read abundances of DEET hydrolase (DH) homologs. To test the causality of this association, we constructed a targeted metagenomic library of DH homologs from flume biofilms. We screened our complete metagenomic library for activity with four different substrates, including DEET, and a subset thereof with 183 WW-related organic compounds. The majority of active hydrolases in the metagenomic library preferred aliphatic and aromatic ester substrates while, remarkably, only a single reference enzyme was capable of DEET hydrolysis. Of the 626 total enzyme-substrate combinations tested, approximately 5% were active enzyme-substrate pairs. Metagenomic DH family homologs revealed a broad substrate promiscuity spanning 22 different compounds when summed across all enzymes tested. We biochemically characterized the most promiscuous and active enzymes identified based on metagenomic analysis from uncultivated Rhodospirillaceae and Planctomycetaceae. In addition to characterizing new DH family enzymes, we exemplified a framework for linking metagenome-guided hypothesis generation with experimental validation. Overall, this study expands the scope of known enzymatic contaminant biotransformations for metagenomic hydrolases from WW-receiving stream biofilm communities.


Asunto(s)
Biopelículas , Hidrolasas , Aguas Residuales , Xenobióticos , Aguas Residuales/química , Xenobióticos/metabolismo , Hidrolasas/metabolismo , Hidrolasas/genética , Contaminantes Químicos del Agua/metabolismo , Ríos , Biotransformación
14.
Sci Adv ; 10(29): eado2957, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39018407

RESUMEN

Enzymatic cleavage of C─F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, ß-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions. A comparison of defluorination activities among several Acetobacterium species indicated that a functional fluoride exporter was required for the detoxification of the released fluoride. Results from both in vivo inhibition tests and in silico enzyme modeling suggested the involvement of enzymes of the flavin-based electron-bifurcating caffeate reduction pathway [caffeoyl-CoA reductase (CarABCDE)] in the reductive defluorination. This is a report on specific microorganisms carrying out enzymatic reductive defluorination of PFAS, which could be linked to electron-bifurcating reductases that are environmentally widespread.


Asunto(s)
Acetobacterium , Fluoruros , Fluoruros/metabolismo , Fluoruros/química , Acetobacterium/metabolismo , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/química , Electrones , Biodegradación Ambiental , Halogenación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Fluorocarburos/metabolismo , Fluorocarburos/química
15.
Nat Water ; 1(5): 451-461, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38405335

RESUMEN

Chlorinated polyfluorocarboxylic acids (Cl-PFCAs) derived from the widely used chlorotrifluoroethylene (CTFE) polymers and oligomers may enter and influence the aquatic environment. Here, we report significant defluorination of Cl-PFCAs by an anaerobic microbial community via novel pathways triggered by anaerobic microbial dechlorination. Cl-PFCAs first underwent microbial reductive, hydrolytic, and eliminative dechlorination, and it was the hydrolytic dechlorination that led to significant spontaneous defluorination. Hydrolytic dechlorination was favored with increased Cl-substitutions. An isolated, highly enriched anaerobic defluorinating culture was dominated by two genomes closest to Desulfovibrio aminophilus and Sporomusa sphaeroides, both of which exhibited active defluorination of CTFE tetramer acid. It implies the critical role played by anaerobic non-respiratory hydrolytic dechlorination in the fate of chlorinated polyfluoro-chemicals in natural and engineered water environments. The greatly enhanced biodegradability by Cl-substitutions also sheds light on the design of cost-effective treatment biotechnologies, as well as alternative PFAS that are readily biodegradable and less toxic.

16.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168399

RESUMEN

Enzymatic cleavage of C-F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, ß-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. Two critical molecular features in Acetobacterium species enabling reductive defluorination are (i) a functional fluoride efflux transporter (CrcB) and (ii) an electron-bifurcating caffeate reduction pathway (CarABCDE). The fluoride transporter was required for detoxification of released fluoride. Car enzymes were implicated in defluorination by the following evidence: (i) only Acetobacterium spp. with car genes catalyzed defluorination; (ii) caffeate and PFAS competed in vivo ; (iii) models from the X-ray structure of the electron-bifurcating reductase (CarC) positioned the PFAS substrate optimally for reductive defluorination; (iv) products identified by 19 F-NMR and high-resolution mass spectrometry were consistent with the model. Defluorination biomarkers identified here were found in wastewater treatment plant metagenomes on six continents.

17.
J Hazard Mater ; 445: 130558, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36495641

RESUMEN

Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e., benzimidazole, albendazole, carbendazim, fuberidazole, and thiabendazole). Ammonia-oxidizing bacteria and archaea, as well as the canonical nitrite-oxidizing Nitrospira exhibited no or minor biotransformation activity towards all the five benzimidazole fungicides. In contrast, the investigated comammox bacteria actively transformed all the five benzimidazole fungicides, except for thiabendazole. The identified transformation products indicated hydroxylation, S-oxidation, and glycosylation as the major biotransformation pathways of benzimidazole fungicides. We speculated that these reactions were catalyzed by comammox-specific ammonia monooxygenase, cytochrome P450 monooxygenases, and glycosylases, respectively. Interestingly, the exposure to albendazole enhanced the expression of the antibiotic resistance gene acrB of Nitrospira inopinata, suggesting that some benzimidazole fungicides could act as environmental stressors that trigger cellular defense mechanisms. Altogether, this study demonstrated the distinct substrate specificity of comammox bacteria towards benzimidazole fungicides and implies their significant roles in the biotransformation of these fungicides in nitrifying environments.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo , Proteómica , Amoníaco/metabolismo , Albendazol , Tiabendazol , Nitrificación , Bacterias/metabolismo , Archaea/metabolismo , Biotransformación , Oxidación-Reducción , Bencimidazoles/toxicidad , Bencimidazoles/metabolismo , Filogenia
18.
Environ Sci Technol Lett ; 8(8): 668-674, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35316934

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a large group of manmade chemicals that impose emerging environmental concerns. Among them, short-chain per- and polyfluorinated carboxylic acids represent an important subgroup used as building blocks of biologically active chemicals and functional materials. Some are also considered PFAS alternatives, and some could be byproducts of the physicochemical treatment of PFAS. However, little is known about the environmental fate of short-chain fluorinated carboxylic acids (FCAs) and their defluorination/transformation by microorganisms. To fill the knowledge gap, we investigated the structure-reactivity relationships in the aerobic defluorination of C3-C5 FCAs by activated sludge communities. Four structures exhibited greater than 20% defluorination, with 3,3,3-trifluoropropionic acid being almost completely defluorinated. We further analyzed the defluorination/transformation pathways and inferred the structures susceptible to aerobic microbial defluorination. We also demonstrated that the defluorination was via cometabolism. The findings advance the fundamental understanding of aerobic microbial defluorination and help assess the environmental fate of PFAS. Since some short-chain PFAS, such as 3,3,3-trifluoropropionic acid, are the incomplete defluorination byproducts of advanced reduction processes, their defluorination by activated sludge communities sheds light on the development of cost-effective chemical-biological PFAS treatment train systems.

19.
Water Res ; 196: 117003, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33730544

RESUMEN

In this study, we evaluated the biotransformation mechanisms of lincomycin (LIN) and three fluoroquinolone antibiotics (FQs), ciprofloxacin (CFX), norfloxacin (NFX), and ofloxacin (OFX), which regularly enter aquatic environments through human activities, by different ammonia-oxidizing microorganisms (AOM). The organisms included a pure culture of the complete ammonia oxidizer (comammox) Nitrospira inopinata, an ammonia oxidizing archaeon (AOA) Nitrososphaera gargensis, and an ammonia-oxidizing bacterium (AOB) Nitrosomonas nitrosa Nm90. The removal of these antibiotics by the pure microbial cultures and the protein-normalized biotransformation rate constants indicated that LIN was significantly co-metabolically biotransformed by AOA and comammox, but not by AOB. CFX and NFX were significantly co-metabolized by AOA and AOB, but not by comammox. None of the tested cultures transformed OFX effectively. Generally, AOA showed the best biotransformation capability for LIN and FQs, followed by comammox and AOB. The transformation products and their related biotransformation mechanisms were also elucidated. i) The AOA performed hydroxylation, S-oxidation, and demethylation of LIN, as well as nitrosation and cleavage of the piperazine moiety of CFX and NFX; ii) the AOB utilized nitrosation to biotransform CFX and NFX; and iii) the comammox carried out hydroxylation, demethylation, and demethylthioation of LIN. Hydroxylamine, an intermediate of ammonia oxidation, chemically reacted with LIN and the selected FQs, with removals exceeding 90%. Collectively, these findings provide important fundamental insights into the roles of different ammonia oxidizers and their intermediates on LIN and FQ biotransformation in nitrifying environments including wastewater treatment systems.


Asunto(s)
Amoníaco , Nitrificación , Antibacterianos , Archaea , Biotransformación , Fluoroquinolonas , Humanos , Lincomicina , Nitrosomonas , Oxidación-Reducción , Filogenia , Microbiología del Suelo
20.
Water Res ; 159: 444-453, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31125804

RESUMEN

The abilities of three phylogenetically distant ammonia oxidizers, Nitrososphaera gargensis, an ammonia-oxidizing archaeon (AOA); Nitrosomomas nitrosa Nm90, an ammonia-oxidizing bacterium (AOB); and Nitrospira inopinata, the only complete ammonia oxidizer (comammox) available as a pure culture, to biotransform seven sulfonamides (SAs) were investigated. The removals and protein-normalized biotransformation rate constants indicated that the AOA strain N. gargensis exhibited the highest SA biotransformation rates, followed by N. inopinata and N. nitrosa Nm90. The transformation products (TPs) of sulfadiazine (SDZ), sulfamethazine (SMZ) and sulfamethoxazole (SMX) and the biotransformation mechanisms were evaluated. Based on the analysis of the TP formulas and approximate structures, it was found that during biotransformation, i) the AOA strain carried out SA deamination, hydroxylation, and nitration; ii) the AOB strain mainly performed SA deamination; and iii) the comammox isolate participated only in deamination reactions. It is proposed that deamination was catalyzed by deaminases while hydroxylation and nitration were mediated by nonspecific activities of the ammonia monooxygenase (AMO). Additionally, it was demonstrated that among the three ammonia oxidizers, only AOB contributed to the formation of pterin-SA conjugates. The biotransformation of SDZ, SMZ and SMX occurred only when ammonia oxidation was active, suggesting a cometabolic transformation mechanism. Interestingly, SAs could also be transformed by hydroxylamine, an intermediate of ammonia oxidation, suggesting that in addition to enzymatic conversions, a microbially induced abiotic mechanism contributes to SA transformation during ammonia oxidation. Overall, using experiments with pure cultures, this study provides important insights into the roles played by ammonia oxidizers in SA biotransformation.


Asunto(s)
Amoníaco , Nitrificación , Archaea , Biotransformación , Oxidación-Reducción , Filogenia , Microbiología del Suelo , Sulfonamidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA