Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Biochem ; 690: 115510, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38513769

RESUMEN

Phosphorylation is indispensable in comprehending biological processes, while biological experimental methods for identifying phosphorylation sites are tedious and arduous. With the rapid growth of biotechnology, deep learning methods have made significant progress in site prediction tasks. Nevertheless, most existing predictors only consider protein sequence information, that limits the capture of protein spatial information. Building upon the latest advancement in protein structure prediction by AlphaFold2, a novel integrated deep learning architecture PhosAF is developed to predict phosphorylation sites in human proteins by integrating CMA-Net and MFC-Net, which considers sequence and structure information predicted by AlphaFold2. Here, CMA-Net module is composed of multiple convolutional neural network layers and multi-head attention is appended to obtaining the local and long-term dependencies of sequence features. Meanwhile, the MFC-Net module composed of deep neural network layers is used to capture the complex representations of evolutionary and structure features. Furthermore, different features are combined to predict the final phosphorylation sites. In addition, we put forward a new strategy to construct reliable negative samples via protein secondary structures. Experimental results on independent test data and case study indicate that our model PhosAF surpasses the current most advanced methods in phosphorylation site prediction.

2.
J Clin Lab Anal ; 36(1): e24185, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34919739

RESUMEN

BACKGROUND: Tuberculosis poses a severe threat to human health. At present, compared with the traditional diagnostic methods for tuberculosis pleural effusion, such as Löwenstein-Jensen culture, pleural biopsy, and Ziehl-Neelsen smear microscopy, Xpert MTB/RIF was regarded as an emerging technology for its efficiency. The Xpert MTB/RIF accuracy for tuberculous pleural effusion diagnosis was evaluated in this systematic study. MATERIALS AND METHODS: We searched the relevant literature published before January 2021 in PubMed, Cochrane, EMBASE, and Web of Science databases. Utilizing Review Manager 5.3 software, the quality of the included literature was evaluated based on the Quality Assessment of Diagnostic Accuracy Studies criteria. Sensitivity, specificity, and the summary receiver operating characteristic curves were plotted and analyzed with Metadisc 1.40 software. We used Stata 12.0 software to evaluate the publication bias of this study. RESULTS: Eighteen articles were identified in total. The sensitivity of Xpert MTB/RIF in the pleural effusion was 0.24, and specificity was 1.00, respectively. The area under the summary receiver operating characteristic curve was 0.9737, which indicated that the overall accuracy of the Xpert MTB/RIF was high. In addition, based on the Deeks funnel plot, no publication bias of the study was found. CONCLUSION: Xpert MTB/RIF is a rapid method with high specificity but relatively low sensitivity for detecting Mycobacterium tuberculosis in pleural effusion. Its less sensitivity made it difficult to be used clinically, but the high specificity suggests that it can be used as a specific diagnostic method for tuberculous pleural effusion.


Asunto(s)
Mycobacterium tuberculosis/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico , Derrame Pleural/microbiología , Tuberculosis/diagnóstico , Humanos , Curva ROC , Estándares de Referencia , Sensibilidad y Especificidad
3.
BMC Microbiol ; 21(1): 329, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852788

RESUMEN

INTRODUCTION: Staphylococcus aureus is a gram-positive bacterium that causes serious infection. With the increasing resistance of bacteria to current antibiotics, it is necessary to learn more about the molecular mechanism and cellular pathways involved in the Staphylococcus aureus infection. METHODS: We downloaded the GSE33341 dataset from the GEO database and applied the weighted gene co-expression network analysis (WGCNA), from which we obtained some critical modules. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were applied to illustrate the biological functions of genes in these modules. We constructed the protein-protein interaction (PPI) network by Cytoscape and selected five candidate hub genes. Five potential hub genes were validated in GSE30119 by GraphPad Prism 8.0. The diagnostic values of these genes were calculated and present in the ROC curve based on the GSE13670 dataset. Their gene functions were analyzed by Gene Set Enrichment Analysis (GSEA). RESULTS: A co-expression network was built with 5000 genes divided into 11 modules. The genes in green and turquoise modules demonstrated a high correlation. According to the KEGG and GO analyses, genes in the green module were closely related to ubiquitination and autophagy. Subsequently, we picked out the top five hub genes in the green module. And UBB was determined as the hub gene in the GSE30119 dataset. The expression level of UBB, ASB, and MKRN1 could significantly differentiate between Staphylococcus aureus infection and healthy controls based on the ROC curve. The GSEA analysis indicated that lower expression levels of UBB were associated with the P53 signal pathway. CONCLUSIONS: We identified some hub genes and significant signal enrichment pathways in Staphylococcus aureus infection via bioinformatics analysis, which may facilitate the development of potential clinical therapeutic strategies.


Asunto(s)
Redes Reguladoras de Genes , Infecciones Estafilocócicas/genética , Staphylococcus aureus/fisiología , Autofagia/genética , Biomarcadores , Biología Computacional , Bases de Datos Genéticas , Humanos , Mapas de Interacción de Proteínas , Curva ROC , Transducción de Señal/genética , Infecciones Estafilocócicas/microbiología , Ubiquitinación/genética
4.
Exp Neurol ; 379: 114864, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866101

RESUMEN

Platelet-derived growth factor receptor ß positive (PDGFRß+) pericytes detach from the microvascular wall and migrate into the injury center following spinal cord injury (SCI), which has been widely regarded as the main source of fibrotic scar, but the mechanism of migration and fibroblast transition remains elusive. Here we show the associated spatiotemporal distribution between microglia and pericytes at three and seven days post-injury (dpi). The increased expression of Sphingosine kinase-1 (SPHK1) in microglia significantly raised the concentration of Sphingosine-1-phosphate (S1P) in the spinal cord, which promotes migration and fibroblast transition of pericyte. In vitro experiments, we found the elevated Sphingosine 1-phosphate receptor 3 (S1P3), the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted its nuclear translocation, which contributed to the formation of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1) protein, This process can be blocked by an S1P3 specific inhibitor TY52156 in vitro. The S1P/S1P3/YAP pathway might be a potential target for treatment in SCI.

5.
Mater Horiz ; 11(11): 2603-2614, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38587002

RESUMEN

Thermomagnetic generation (TMG), a promising technology to convert low-grade waste heat to electricity, utilizes high performance TMG materials. However, the drawbacks of large hysteresis, poor mechanical properties and inadequate service life hinder the practical applications. For the first time, we evaluated the effect of different phase transitions on the TMG performance by systematically comparing the TMG performance of three typical Heusler alloys with similar composition but different phase transitions. Ni2Mn1.4In0.6 exhibits second-order magnetic transition (SOMT) from the ferromagnetic (FM) to paramagnetic (PM) state around TC = 316 K without thermal hysteresis. It presents highly comprehensive TMG performance, which is not only better than those of other two Heusler alloys with different phase transitions, but also better than those of most typical TMG materials. The maximum power density (1752.3 mW m-3), cost index (2.78 µW per €), and power generation index PGI (8.91 × 10-4) of Ni2Mn1.4In0.6 are 1-5, 1-4, and 1-7 orders of magnitude higher than those of most typical reported materials, respectively. In addition, Ni2Mn1.4In0.6 with SOMT also shows some advantages that first-order magnetic transition (FOMT) materials do not have, such as zero hysteresis and a long-term service life. In contrast to the short lifetime of a few minutes for the materials with FOMT, Ni2Mn1.4In0.6 with SOMT can serve for one month or even longer with excellent cycling stability. Consequently, we conclude that the SOMT Ni2Mn1.4In0.6 Heusler alloy with good TMG performance as well as zero hysteresis and long service life can be a better candidate than FOMT materials for practical applications of TMG.

6.
Nat Commun ; 14(1): 4811, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558655

RESUMEN

Low grade waste heat accounts for ~65% of total waste heat, but conventional waste heat recovery technology exhibits low conversion efficiency for low grade waste heat recovery. Hence, we designed a thermomagnetic generator for such applications. Unlike its usual role as the coil core or big magnetic yoke in previous works, here the magnetocaloric material acts as a switch that controls the magnetic circuit. This makes it not only have the advantage of flux reversal of the pretzel-like topology, but also present a simpler design, lower magnetic stray field, and higher performance by using less magnetocaloric material than preceding devices. The effects of key structural and system parameters were studied through a combination of experiments and finite element simulations. The optimized max power density PDmax produced by our device is significantly higher than those of other existing active thermomagnetic, thermo, and pyroelectric generators. Such high performance shows the effectiveness of our topology design of magnetic circuit with magnetocaloric switch.

7.
Bioengineered ; 14(1): 2180221, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37489712

RESUMEN

Rapid laboratory detection is remarkably crucial to diagnosing coronavirus disease 2019 (COVID-19) infection, due to whose outbreak causes to the world pandemic. The BinaxNOW antigen card (BinaxNOW) is a simple, effective, and cheap tool to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The meta-analysis in this study was conducted to evaluate the diagnostic performance of BinaxNOW for SARS-CoV-2. The researchers independently retrieved the related databases (PubMed, Embase, Web of Science, Cochrane Library) before May 1st, 2021, and extracted the relevant data based on the early inclusion/exclusion criterion. Quality Assessment of Diagnostic Accuracy Study-2 was used to evaluate the quality of the enrolled studies. Stata 16.0, Meta-DiSc 1.4, and Review Manager 5.3 were used to generate analytical data for the statistical analysis. 59 sets of data were identified from the seven studies included in this meta-analysis. The combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and their 95% confidence intervals were 0.77 (0.76 to 0.79), 0.99 (0.99 to 0.99), 65.72 (48.23 to 89.56), 0.23 (0.19 to 0.28), and 461.10 (281.55 to 755.13), respectively. The area under curve was 0.9910 in the summary receiver operating characteristic curve. BinaxNOW is beneficial for symptomatic patients' onset within 7 days. CT value and testing site may be the heterogeneity source of BinaxNOW accuracy. Moreover, this technology has an efficient performance for diagnosing COVID-19, especially in patients with heavy viral load. BinaxNOW may become a practical tool for large-scale or at-home use for COVID-19 in the post-pandemic era.Highlights● Pooled sensitivity with 0.77 and specificity with 0.99 in the BinaxNOW assay.● CT value and testing site may be the heterogeneity source of BinaxNOW accuracy.● BinaxNOW is beneficial for symptomatic patients' onset within 7 days.● BinaxNOW may become a practical tool for large-scale or at-home use for COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Bases de Datos Factuales , Oportunidad Relativa , Pandemias , Prueba de COVID-19
8.
Materials (Basel) ; 15(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35744390

RESUMEN

In this study, a homemade uniaxial strain pressure cell was designed to be directly used in the standard magnetometers whereby the magnetic properties of samples subjected to a uniaxial strain and magnetic field were characterized. Its feasibility has been demonstrated by the uniaxial strain control of the phase transition and magnetocaloric effect in Ni40Co10Mn40Sn10 (NCMS) alloys. With the assistance of a uniaxial strain of ~0.5%, the cooling temperature span of NCMS alloys is broadened by 2 K, and the refrigeration capacity under a 3 T magnetic field change increases from 246 to 277 J/kg. This research provides not only direct experimental assistance for the tuning of phase transition by the uniaxial strain but also possibilities for studying the coupled caloric effect in first-order phase transition materials under a combined uniaxial strain and magnetic field by the thermodynamic analysis.

9.
Int J Genomics ; 2022: 6465760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419652

RESUMEN

Lower-grade gliomas (LGG) are the most common intracranial malignancies that readily evolve to high-grade gliomas and increase drug resistance. Paraptosis is defined as a nonapoptotic form of programmed cell death, which is gradually focused on patients with gliomas to develop treatment options. However, the specific role of paraptosis in LGG and its correlation is still vague. In this study, we first establish the novel paraptosis-based prognostic model for LGG patients. The relevant data of LGG patients were acquired from The Cancer Genome Atlas database, and we found that LGG patients could be divided into three different clusters based on paraptosis via consensus cluster analysis. Through least absolute shrinkage and selection operator regression analysis and multivariate Cox regression analysis, 10-paraptosis-related gene (PRG) signatures (CDK4, TNK2, DSTYK, CDKN3, CCR4, CASP9, HSPA5, RGR, LPAR1, and PDCD6IP) were identified to separate LGG patients into high- and low-risk subgroups successfully. The Kaplan-Meier analysis and time-dependent receiver-operating characteristic showed that the performances of predicting overall survival (OS) were dramatically high. The parallel results were reappeared and verified by using the Chinese Glioma Genome Atlas and Gene Expression Omnibus databases. Independent prognostic analysis and nomogram construction implied that risk scores could be considered the independent factor to predict OS. Enrichment analysis indicated that immune-related biological processes were generally enriched, and different immune statuses were highly infiltrated in high-risk group. We also confirmed the potential relationship of 10-PRG signatures and drug sensitivity of Food and Drug Administration-approved drugs. In summary, our findings provide a novel knowledge of paraptosis status and crucial direction to further explore the role of PRG signatures in LGG.

10.
Clin Chim Acta ; 533: 183-218, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792161

RESUMEN

BACKGROUND: Line probe assays (LPAs) are PCR-based assays used for the rapid diagnosis of Mycobacterium tuberculosis (MTB) and drug-resistant tuberculosis (DR-TB). But studies on its performance are insufficient. Thus, in this study, we conducted a systematic review and meta-analysis to evaluate the effect of LPAs in the detection of MTB and drug-resistant TB in comparison with the traditional culture and DST methods. METHODS: A systemic literature search was conducted on the Web of Science, Embase, PubMed, the Cochrane Library, Scopus, and OVID databases. All the included studies were classified according to different detecting objects. Sensitivity, specificity, Positive Likely Ratio (PLR), Negative Likely Ratio (NLR), Diagnostic Odds Ratio (DOR), corresponding 95% confidence interval, Area Under Curve (AUC), Deeks' funnel plot, and Bivariate Boxplot was used to do the evaluation. RESULTS: 147 studies included 491 datasets, with 182,448 samples, were incorporated into our analysis. The sensitivity (95% CI), specificity (95% CI), PLR, NLR, DOR and AUC for MTB were 0.89 (0.86 to 0.92), 0.94 (0.90 to 0.97), 15.70, 0.11, 139 and 0.96, respectively; for rifampicin-resistant TB were 0.96 (0.95 to 0.97), 0.99 (0.98 to 0.99), 82.9, 0.04, 1994 and 1.00, respectively; for isoniazid-resistant TB were 0.91 (0.89 to 0.93), 0.99 (0.98 to 0.99), 83.4, 0.09, (0.99 to 1.00), 195.7, 0.07, 2783 and 1.00, respectively; for Multi-drug resistant TB (MDR-TB) were 0.93 (0.90 to 0.95), 1.00 (0.99 to 1.00), 195.7, 0.07, 2783 and 1.00, respectively; for extensively drug-resistant TB (XDR-TB) were 0.60 (0.33 to 0.82), 1.00 (0.95 to 1.00), 291.3, 0.4, 726 and 0.95, respectively; for (second-line drug-resistant TB) SLID-TB were 0.83 (0.78 to 0.87), 0.98 (0.97 to 0.99), 44.6, 0.17, 262 and 0.98, respectively. Sensitivity in pre-extensively drug-resistant TB (Pre-XDR-TB) was 0.67, specificity was 0.91. No publication bias existed according to Deeks' funnel plot. CONCLUSION: High diagnosis performance was confirmed in LPAs for the diagnosis of MTB and drug-resistant TB. LPAs might be a good alternative to culture and DST in detecting MTB, RR-TB, INH-TB, XDR-TB, SLID-TB, and MDR-TB. While more studies were still needed to explore the diagnosis performance of LPAs for Pre-XDR TB.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/diagnóstico , Humanos , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Rifampin/farmacología , Sensibilidad y Especificidad , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
11.
J Biol Eng ; 14: 22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774454

RESUMEN

Traffic accidents, falls, and many other events may cause traumatic spinal cord injuries (SCIs), resulting in nerve cells and extracellular matrix loss in the spinal cord, along with blood loss, inflammation, oxidative stress (OS), and others. The continuous development of neural tissue engineering has attracted increasing attention on the application of fibrin hydrogels in repairing SCIs. Except for excellent biocompatibility, flexibility, and plasticity, fibrin, a component of extracellular matrix (ECM), can be equipped with cells, ECM protein, and various growth factors to promote damage repair. This review will focus on the advantages and disadvantages of fibrin hydrogels from different sources, as well as the various modifications for internal topographical guidance during the polymerization. From the perspective of further improvement of cell function before and after the delivery of stem cell, cytokine, and drug, this review will also evaluate the application of fibrin hydrogels as a carrier to the therapy of nerve repair and regeneration, to mirror the recent development tendency and challenge.

12.
J Biol Eng ; 14: 14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391080

RESUMEN

The materials used in bone tissue engineering (BTE) have been advancing with each passing day. With the continuous development of nanomedicine, gold nanoparticles (GNPs), which are easy to be synthesized and functionalized, have attracted increasing attention. Recent years have witnessed this amazing material, i.e., GNPs characterized with large surface area to volume ratio, biocompatibility, medical imaging property, hypotoxicity, translocation into the cells, high reactivity, and other properties, perform distinct functions in BTE. However, the low stability of GNPs in the biotic environment makes them in the requirements of modification or recombination before being used. After being combined with the advantages of other materials, the structures of GNPs have exhibited great potential in stem cells, scaffolds, delivery systems, medical imaging, and other aspects. This review will focus on the advances in the application of GNPs after modification or recombination with other materials to BTE.

13.
Int J Nanomedicine ; 15: 7199-7214, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061376

RESUMEN

The ongoing biomedical nanotechnology has intrigued increasingly intense interests in cerium oxide nanoparticles, ceria nanoparticles or nano-ceria (CeO2-NPs). Their remarkable vacancy-oxygen defect (VO) facilitates the redox process and catalytic activity. The verification has illustrated that CeO2-NPs, a nanozyme based on inorganic nanoparticles, can achieve the anti-inflammatory effect, cancer resistance, and angiogenesis. Also, they can well complement other materials in tissue engineering (TE). Pertinent to the properties of CeO2-NPs and the pragmatic biosynthesis methods, this review will emphasize the recent application of CeO2-NPs to orthopedic biomedicine, in particular, the bone tissue engineering (BTE). The presentation, assessment, and outlook of the orthopedic potential and shortcomings of CeO2-NPs in this review expect to provide reference values for the future research and development of therapeutic agents based on CeO2-NPs.


Asunto(s)
Tecnología Biomédica , Cerio/química , Nanopartículas/química , Ortopedia , Humanos , Nanotecnología , Prótesis e Implantes
14.
ACS Appl Mater Interfaces ; 3(11): 4404-14, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22008385

RESUMEN

A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA