Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Cancer ; 152(8): 1707-1718, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522844

RESUMEN

Liquid biopsy techniques based on deep sequencing of plasma cell-free DNA (cfDNA) could detect the low-frequency somatic mutations and provide an accurate diagnosis for many cancers. However, for brain gliomas, reliable performance of these techniques currently requires obtaining cfDNA from patients' cerebral spinal fluid, which is cumbersome and risky. Here we report a liquid biopsy method based on sequencing of plasma cfDNA fragments carrying 5-hydroxymethylcytosine (5hmC) using selective chemical labeling (hMe-Seal). We first constructed a dataset including 180 glioma patients and 229 non-glioma controls. We found marked concordance between cfDNA hydroxymethylome and the aberrant transcriptome of the underlying gliomas. Functional analysis also revealed overrepresentation of the differentially hydroxymethylated genes (DhmGs) in oncogenic and neural pathways. After splitting our dataset into training and test cohort, we showed that a penalized logistic model constructed with training set DhmGs could distinguish glioma patients from healthy controls in both our test set (AUC = 0.962) and an independent dataset (AUC = 0.930) consisting of 111 gliomas and 111 controls. Additionally, the DhmGs between gliomas with mutant and wild-type isocitrate dehydrogenase (IDH) could be used to train a cfDNA predictor of the IDH mutation status of the underlying tumor (AUC = 0.816), and patients with predicted IDH mutant gliomas had significantly better outcome (P = .01). These results indicate that our plasma cfDNA 5hmC sequencing method could obtain glioma-specific signals, which may be used to noninvasively detect these patients and predict the aggressiveness of their tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , 5-Metilcitosina , Mutación , Encéfalo/patología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
2.
World J Surg Oncol ; 20(1): 137, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488347

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most frequent and lethal brain tumor, which possesses highly malignant characteristics and predominates in elder patients. Systemic inflammatory response index (SIRI) is a novel prognostic marker from peripheral blood, which is defined as neutrophil count × monocyte count/lymphocyte count. In the current research, we aim to explore the relationship between SIRI and newly diagnosed GBM underwent gross total resection (GTR). METHODS: A retrospective analysis was conducted on consecutive newly diagnosed GBM patients underwent operation at West China Hospital from March 2015 to January 2019. X-tile software was used to determine the optimal cut-off values of SIRI, and neutrophil to lymphocyte ratio (NLR). All statistical analyses were performed using SPSS software and R software. Propensity score matching (PSM) was conducted to adjust for imbalance of all potential confounding covariates. RESULTS: The current research included a total of 291 consecutive newly diagnosed GBM patients underwent gross total resection. Among them, 186 were male patients and 105 were female patients. In original cohort, only gender was evidently related to SIRI level. SIRI and NLR were independent prognostic indicators both in original cohort and PSM cohort. Prognostic models based on the independent prognostic factors were established, and prognostic capacity of Model SIRI was superior to Model NLR. CONCLUSION: In the current research, SIRI was determined to be an independent prognostic indicator for GBM. And the prognostic predictive ability of SIRI was stronger than NLR.


Asunto(s)
Glioblastoma , Anciano , Femenino , Glioblastoma/patología , Glioblastoma/cirugía , Humanos , Inflamación/patología , Masculino , Pronóstico , Puntaje de Propensión , Estudios Retrospectivos
3.
Sci Rep ; 14(1): 14713, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926610

RESUMEN

Idiopathic normal pressure hydrocephalus (iNPH) affects mainly aged populations. The gradual shortening of telomere length (TL) is one of the hallmarks of aging. Whereas the genetic contribution of TL to the iNPH is incompletely understood. We aimed to investigate the causal relationship between TL and iNPH through the Mendelian randomization (MR) analysis. We respectively obtained 186 qualified single nucleotide polymorphisms (SNPs) of TL and 20 eligible SNPs of iNPH for MR analysis. The result of MR analysis showed that genetically predicted longer TL was significantly associated with a reduced odd of iNPH (odds ratio [OR] = 0.634 95% Confidence interval [CI] 0.447-0.899, p = 0.011). The causal association remained consistent in multivariable MR (OR = 0.530 95% CI 0.327-0.860, p = 0.010). However, there was no evidence that the iNPH was causally associated with the TL (OR = 1.000 95% CI 0.996-1.004, p = 0.955). Our study reveals a potential genetic contribution of TL to the etiology of iNPH, that is a genetically predicted increased TL might be associated with a reduced risk of iNPH.


Asunto(s)
Hidrocéfalo Normotenso , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Humanos , Hidrocéfalo Normotenso/genética , Telómero/genética , Predisposición Genética a la Enfermedad , Factores de Riesgo , Homeostasis del Telómero/genética , Masculino , Anciano
4.
Brain Behav ; 14(5): e3532, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779749

RESUMEN

BACKGROUND: Neurocognitive and psychiatric disorders have been proved that they can comorbid more often with idiopathic normal pressure hydrocephalus (iNPH) than general population. However, the potential causal association between these disorders and iNPH has not been assessed. Thus, our study aims to investigate the causal relationship between them based on a bidirectional Mendelian randomization (MR) analysis. METHODS: Random effects of the inverse variance weighted (IVW) method were conducted to obtain the causal association among the neurocognitive disorders, psychiatric disorders, and iNPH. Genome-wide association studies (GWAS) of 12 neurocognitive and psychiatric disorders were downloaded via the OpenGWAS database, GWAS Catalog, and Psychiatric Genomics Consortium, whereas GWAS data of iNPH were obtained from the FinnGen consortium round 9 release, with 767 cases and 375,610 controls of European ancestry. We also conducted the sensitivity analysis in these significant causal inferences using weighted median model, Cochrane's Q test, MR-Egger regression, MR Pleiotropy Residual Sum and Outlier detect and the leave-one-out analysis. RESULTS: For most of the neurocognitive and psychiatric disorders, no causal association was established between them and iNPH. We have found that iNPH (odds ratio [OR] = 1.030, 95% confidence interval [CI]: 1.011-1.048, p = .001) is associated with increased risk for schizophrenia, which failed in validation of sensitivity analysis. Notably, genetically predicted Parkinson's disease (PD) is associated with increased risk of iNPH (OR = 1.256, 95% CI: 1.045-1.511, p = .015). CONCLUSION: Our study has revealed the potential causal effect in which PD associated with an increased risk of iNPH. Further study is warranted to investigate the association between PD and iNPH and the potential underlying mechanism.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hidrocéfalo Normotenso , Análisis de la Aleatorización Mendeliana , Trastornos Mentales , Humanos , Hidrocéfalo Normotenso/genética , Hidrocéfalo Normotenso/epidemiología , Trastornos Mentales/genética , Trastornos Mentales/epidemiología , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/epidemiología
5.
Front Cell Neurosci ; 17: 1155982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252189

RESUMEN

Introduction: High-grade glioma (HGG) defines a group of brain gliomas characterized by contrast enhancement, high tumor heterogeneity, and poor clinical outcome. Disturbed reduction-oxidation (redox) balance has been frequently associated with the development of tumor cells and their microenvironment (TME). Methods: To study the influence of redox balance on HGGs and their microenvironment, we collected mRNA-sequencing and clinical data of HGG patients from TCGA and CGGA databases and our own cohort. Redox-related genes (ROGs) were defined as genes in the MSigDB pathways with keyword "redox" that were differentially expressed between HGGs and normal brain samples. Unsupervised clustering analysis was used to discover ROG expression clusters. Over-representation analysis (ORA), gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were also employed to understand the biological implication of differentially expressed genes between HGG clusters. CIBERSORTx and ESTIMATE were used to profile the immune TME landscapes of tumors, and TIDE was used to evaluated the potential response to immune checkpoint inhibitors. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression was used to construct HGG-ROG expression risk signature (GRORS). Results: Seventy-five ROGs were found and consensus clustering using the expression profile of ROGs divided the both IDH-mutant (IDHmut) and IDH-wildtype (IDHwt) HGGs into subclusters with different prognosis. Functional enrichment analysis revealed that the differential aggressiveness between redox subclusters in IDHmut HGGs were significantly associated with cell cycle regulation pathways, while IDHwt HGG redox subclusters showed differentially activated immune-related pathways. In silico TME analysis on immune landscapes in the TME showed that the more aggressive redox subclusters in both IDHmut and IDHwt HGGs may harbor a more diverse composition of tumor-infiltrating immune cells, expressed a higher level of immune checkpoints and were more likely to respond to immune checkpoint blockade. Next, we established a GRORS which showed AUCs of 0.787, 0.884, and 0.917 in predicting 1-3-year survival of HGG patients in the held-out validation datasets, and the C-index of a nomogram combining the GRORS and other prognostic information reached 0.835. Conclusion: Briefly, our results suggest that the expression pattern of ROGs was closely associated with the prognosis as well as the TME immune profile of HGGs, and may serve as a potential indicator for their response to immunotherapies.

6.
Front Immunol ; 14: 1021678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860853

RESUMEN

Background: Glioma is the most common primary brain tumor in adults and accounts for more than 70% of brain malignancies. Lipids are crucial components of biological membranes and other structures in cells. Accumulating evidence has supported the role of lipid metabolism in reshaping the tumor immune microenvironment (TME). However, the relationship between the immune TME of glioma and lipid metabolism remain poorly described. Materials and methods: The RNA-seq data and clinicopathological information of primary glioma patients were downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). An independent RNA-seq dataset from the West China Hospital (WCH) also included in the study. Univariate Cox regression and LASSO Cox regression model was first to determine the prognostic gene signature from lipid metabolism-related genes (LMRGs). Then a risk score named LMRGs-related risk score (LRS) was established and patients were stratified into high and low risk groups according to LRS. The prognostic value of the LRS was further demonstrated by construction of a glioma risk nomogram. ESTIMATE and CIBERSORTx were used to depicted the TME immune landscape. Tumor Immune Dysfunction and Exclusion (TIDE) was utilized to predict the therapeutic response of immune checkpoint blockades (ICB) among glioma patients. Results: A total of 144 LMRGs were differentially expressed between gliomas and brain tissue. Finally, 11 prognostic LMRGs were included in the construction of LRS. The LRS was demonstrated to be an independent prognostic predictor for glioma patients, and a nomogram consisting of the LRS, IDH mutational status, WHO grade, and radiotherapy showed a C-index of 0.852. LRS values were significantly associated with stromal score, immune score, and ESTIMATE score. CIBERSORTx indicated remarkable differences in the abundance of TME immune cells between patients with high and low LRS risk levels. Based on the results of TIDE algorithm, we speculated that the high-risk group had a greater chance of benefiting from immunotherapy. Conclusion: The risk model based upon LMRGs could effectively predict prognosis in patients with glioma. Risk score also divided glioma patients into different groups with distinct TME immune characteristics. Immunotherapy is potentially beneficial to glioma patients with certain lipid metabolism profiles.


Asunto(s)
Glioma , Metabolismo de los Lípidos , Adulto , Humanos , Metabolismo de los Lípidos/genética , Microambiente Tumoral/genética , Glioma/genética , Glioma/terapia , Pronóstico , Nomogramas
7.
Front Pharmacol ; 14: 1145828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214463

RESUMEN

Introduction: Glioblastoma is one of the most lethal cancers and leads to more than 200,000 deaths annually. However, despite lots of researchers devoted to exploring novel treatment regime, most of these attempts eventually failed to improve the overall survival of glioblastoma patients in near 20 years. Immunotherapy is an emerging therapy for cancers and have succeeded in many cancers. But most of its application in glioblastoma have been proved with no improvement in overall survival, which may result from the unique immune microenvironment of glioblastoma. Arginine is amino acid and is involved in many physiological processes. Many studies have suggested that arginine and its metabolism can regulate malignancy of multiple cancers and influence the formation of tumor immune microenvironment. However, there is hardly study focusing on the role of arginine metabolism in glioblastoma. Methods: In this research, based on mRNA sequencing data of 560 IDH-wildtype glioblastoma patients from three public cohorts and one our own cohort, we aimed to construct an arginine metabolism-related genes signature (ArMRS) based on four essential arginine metabolism-related genes (ArMGs) that we filtered from all genes with potential relation with arginine metabolism. Subsequently, the glioblastoma patients were classified into ArMRS high-risk and low-risk groups according to calculated optimal cut-off values of ArMRS in these four cohorts. Results: Further validation demonstrated that the ArMRS was an independent prognostic factor and displayed fine efficacy in prediction of glioblastoma patients' prognosis. Moreover, analyses of tumor immune microenvironment revealed that higher ArMRS was correlated with more immune infiltration and relatively "hot" immunological phenotype. We also demonstrated that ArMRS was positively correlated with the expression of multiple immunotherapy targets, including PD1 and B7-H3. Additionally, the glioblastomas in the ArMRS high-risk group would present with more cytotoxic T cells (CTLs) infiltration and better predicted response to immune checkpoint inhibitors (ICIs). Discussion: In conclusion, our study constructed a novel score system based on arginine metabolism, ArMRS, which presented with good efficacy in prognosis prediction and strong potential to predict unique immunological features, resistance to immunotherapy, and guide the application of immunotherapy in IDH-wild type glioblastoma.

8.
Front Psychiatry ; 14: 1275834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173707

RESUMEN

Background: Postpartum depression (PPD) is a type of depressive episode related to parents after childbirth, which causes a variety of symptoms not only for parents but also affects the development of children. The causal relationship between potential risk factors and PPD remains comprehensively elucidated. Methods: Linkage disequilibrium score regression (LDSC) analysis was conducted to screen the heritability of each instrumental variant (IV) and to calculate the genetic correlations between effective causal factors and PPD. To search for the causal effect of multiple potential risk factors on the incidence of PPD, random effects of the inverse variance weighted (IVW) method were applied. Sensitivity analyses, including weighted median, MR-Egger regression, Cochrane's Q test, and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO), were performed to detect potential Mendelian randomization (MR) assumption violations. Multivariable MR (MVMR) was conducted to control potential multicollinearity. Results: A total of 40 potential risk factors were investigated in this study. LDSC regression analysis reported a significant genetic correlation of potential traits with PPD. MR analysis showed that higher body mass index (BMI) (Benjamini and Hochberg (BH) corrected p = 0.05), major depression (MD) (BH corrected p = 5.04E-19), and schizophrenia (SCZ) (BH corrected p = 1.64E-05) were associated with the increased risk of PPD, whereas increased age at first birth (BH corrected p = 2.11E-04), older age at first sexual intercourse (BH corrected p = 3.02E-15), increased average total household income before tax (BH corrected p = 4.57E-02), and increased years of schooling (BH corrected p = 1.47E-11) led to a decreased probability of PPD. MVMR analysis suggested that MD (p = 3.25E-08) and older age at first birth (p = 8.18E-04) were still associated with an increased risk of PPD. Conclusion: In our MR study, we found multiple risk factors, including MD and younger age at first birth, to be deleterious causal risk factors for PPD.

9.
Clin Epigenetics ; 15(1): 159, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805541

RESUMEN

BACKGROUND: Epigenetic clocks constructed from DNA methylation patterns have emerged as excellent predictors of aging and aging-related health outcomes. Iron, a crucial element, is meticulously regulated within organisms, a phenomenon referred as iron homeostasis. Previous researches have demonstrated the sophisticated connection between aging and iron homeostasis. However, their causal relationship remains relatively unexplored. RESULTS: Through two-sample Mendelian randomization (MR) utilizing the random effect inverse variance weighted (IVW) method, each standard deviation (SD) increase in serum iron was associated with increased GrimAge acceleration (GrimAA, BetaIVW = 0.27, P = 8.54E-03 in 2014 datasets; BetaIVW = 0.31, P = 1.25E-02 in 2021 datasets), HannumAge acceleration (HannumAA, BetaIVW = 0.32, P = 4.50E-03 in 2014 datasets; BetaIVW = 0.32, P = 8.03E-03 in 2021 datasets) and Intrinsic epigenetic age acceleration (IEAA, BetaIVW = 0.34, P = 5.33E-04 in 2014 datasets; BetaIVW = 0.49, P = 9.94E-04 in 2021 datasets). Similar results were also observed in transferrin saturation. While transferrin manifested a negative association with epigenetic age accelerations (EAAs) sensitivity analyses. Besides, lack of solid evidence to support a causal relationship from EAAs to iron-related biomarkers. CONCLUSIONS: The results of present investigation unveiled the causality of iron overload on acceleration of epigenetic clocks. Researches are warranted to illuminate the underlying mechanisms and formulate strategies for potential interventions.


Asunto(s)
Metilación de ADN , Análisis de la Aleatorización Mendeliana , Humanos , Aceleración , Hierro , Homeostasis , Transferrinas , Epigénesis Genética , Estudio de Asociación del Genoma Completo
10.
Front Neurol ; 14: 1104738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970537

RESUMEN

Background: Diffuse gliomas possess a kind of malignant brain tumor with high mortality. Glutamine represents the most abundant and versatile amino acid in the body. Glutamine not only plays an important role in cell metabolism but also involves in cell survival and malignancies progression. Recent studies indicate that glutamine could also affect the metabolism of immune cells in the tumor microenvironment (TME). Materials and methods: The transcriptome data and clinicopathological information of patients with glioma were acquired from TCGA, CGGA, and West China Hospital (WCH). The glutamine metabolism-related genes (GMRGs) were retrieved from the Molecular Signature Database. Consensus clustering analysis was used to discover expression patterns of GMRGs, and glutamine metabolism risk scores (GMRSs) were established to model tumor aggressiveness-related GMRG expression signature. ESTIMATE and CIBERSORTx were applied to depict the TME immune landscape. The tumor immunological phenotype analysis and TIDE were utilized for predicting the therapeutic response of immunotherapy. Results: A total of 106 GMRGs were retrieved. Two distinct clusters were established by consensus clustering analysis, which showed a close association with the IDH mutational status of gliomas. In both IDH-mutant and IDH-wildtype gliomas, cluster 2 had significantly shorter overall survival compared with cluster 1, and the differentially expressed genes between the two clusters enriched in pathways related to malignant transformation as well as immunity. In silico TME analysis of the two IDH subtypes revealed not only significantly different immune cell infiltrations and immune phenotypes between the GMRG expression clusters but also different predicted responses to immunotherapy. After the screening, a total of 10 GMRGs were selected to build the GMRS. Survival analysis demonstrated the independent prognostic role of GMRS. Prognostic nomograms were established to predict 1-, 2-, and 3-year survival rates in the four cohorts. Conclusion: Different subtypes of glutamine metabolism could affect the aggressiveness and TME immune features of diffuse glioma, despite their IDH mutational status. The expression signature of GMRGs could not only predict the outcome of patients with glioma but also be combined into an accurate prognostic nomogram.

11.
Front Oncol ; 12: 775430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052263

RESUMEN

Background: Glioblastoma (GBM) accounts for approximately 80% of malignant gliomas and is characterized by considerable cellularity and mitotic activity, vascular proliferation, and necrosis. Naples prognostic score (NPS), based on inflammatory markers and nutritional status, has a prognostic ability in various cancers. In the current study, we aim to explore the prognostic value of operative NPS in GBM patients and compare the prognostic ability between NPS and controlling nutritional status (CONUT). Materials and methods: The retrospective analysis was carried out on consecutive newly diagnosed GBM patients who had underwent tumor resection at West China Hospital from February 2016 to March 2019. All statistical analyses were conducted using SPSS software and R software. Results: A total of 276 newly diagnosed GBM patients were enrolled in the current study. Overall survival (OS) (p < 0.001) and tumor location (p = 0.007) were significantly related to NPS. Serum albumin concentrate, cholesterol concentrate, neutrophil-to-lymphocyte ratio, lymphocyte ratio, and CONUT score were all significantly associated with NPS (p < 0.001). The Kaplan-Meier curve indicated that NPS (log-rank test, p < 0.001) and CONUT score (log-rank test, p = 0.023) were significantly associated with OS. Multivariate Cox regression revealed that both NPS and CONUT score served as independent prognostic indicators. The prognostic model with NPS had the strongest prognostic capability and best model-fitting. Conclusion: In the current study, NPS is found as an independent prognostic indicator for patients with newly diagnosed GBM, and the prognostic ability of NPS is superior to CONUT score.

12.
Front Oncol ; 12: 1008219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203434

RESUMEN

Glioma is one of the most malignant intracerebral tumors, whose treatment means was limited, and prognosis was unsatisfactory. Lactate metabolism patterns have been shown to be highly heterogenous among different tumors and produce diverse impact on the tumor microenvironment. To understand the characteristics and implications of lactate metabolism gene expression, we developed a lactate metabolism-related gene expression signature of gliomas based on RNA-sequencing data of a total of 965 patient samples from TCGA, CGGA, and our own glioma cohort. Sixty-three lactate metabolism-related genes (LMGs) were differentially expressed between glioma and normal brain tissue, and consensus clustering analysis identified two clusters distinct LMG expression patterns. The consensus clusters differed in prognosis, molecular characteristics and estimated immune microenvironment landscape involving immune checkpoint proteins, T cell dysfunction and exclusion, as well as tumor purity. Univariate Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) Cox hazard regression was applied in determining of prognosis-related lactate metabolism genes (PRLMGs), on which prognostic lactate metabolism risk score (PLMRS) was constructed. The high PLMRS group was associated with significantly poorer patient outcome. A nomogram containing PLMRS and other independent prognostic variables was established with remarkable predictive performance on patient survival. Exploration on the somatic mutations and copy number variations of the high- and low-PLMRS groups demonstrated their distinct genetic background. Together, our results indicated that the expression signature of LMG was associated with the prognosis of glioma patients and influenced the activity of immune cells in the tumor microenvironment, which may serve as a potential biomarker for predicting response of gliomas to immunotherapy.

13.
Front Pharmacol ; 13: 1016520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267281

RESUMEN

Glioma is the most prevalent malignancy in the central nervous system. The impact of ion-induced cell death on malignant tumors' development and immune microenvironment has attracted broad attention in recent years. Cuproptosis is a novel copper-dependent mechanism that could potentially regulate tumor cell death by targeting mitochondria respiration. However, the role of cuproptosis in gliomas remains unclear. In the present study, we investigated the relationships between the expression of cuproptosis-related genes (CRGs) and tumor characteristics, including prognosis and microenvironment of glioma, by analyzing multiple public databases and our cohort. Consensus clustering based on the expression of twelve CRGs stratified the glioma patients into three subgroups with significantly different prognosis and immune microenvironment landscapes. Reduced immune infiltration was associated with the less aggressive CRG cluster. A prognostic CRGs risk signature (CRGRS), based on eight critical CRGs, classified the patients into low- and high-risk groups in the training set and was endorsed by validation sets from multiple cohorts. The high-risk group manifested a shorter overall survival, and further survival analysis demonstrated that the CRGRS was an independent prognostic factor. The nomogram combining CRGRS and other clinicopathological factors exhibited good accuracy in predicting the prognosis of glioma patients. Moreover, analyses of tumor immune microenvironment indicated that higher CRGRS was correlated with increased immune cell infiltration but diminished immune function. Gliomas in the high-risk group exhibited higher expression of multiple immune checkpoints, including PD-1 and PD-L1, and a better predicted therapy response to immune checkpoint inhibitors. In conclusion, our study elucidated the connections between CRGs expression and the aggressiveness of gliomas, and the application of CRGRS derived a new robust model for prognosis evaluation of glioma patients. The correlations between the profiles of CRGs expression and immune tumor microenvironment illuminated prospects and potential indications of immunotherapy for glioma.

14.
Front Pharmacol ; 13: 1061597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386216

RESUMEN

Glioma is the most common malignant tumor in the central nervous system with no significant therapeutic breakthrough in recent years. Most attempts to apply immunotherapy in glioma have failed. Tryptophan and its metabolism can regulate malignant features of cancers and reshape immune microenvironment of tumors. However, the role of tryptophan metabolism in glioma remains unclear. In current study, we explored the relationships between the expression pattern of tryptophan metabolism-related genes (TrMGs) and tumor characteristics, including prognosis and tumor microenvironment of gliomas through analyzing 1,523 patients' samples from multiple public databases and our own cohort. Based on expression of TrMGs, K-means clustering analysis stratified all glioma patients into two clusters with significantly different TrMG expression patterns, clinicopathological features and immune microenvironment. Furthermore, we constructed a tryptophan metabolism-related genes signature (TrMRS) based on seven essential TrMGs to classify the patients into TrMRS low- and high-risk groups and validated the prognostic value of the TrMRS in multiple cohorts. Higher TrMRS represented for potentially more active tryptophan catabolism, which could subsequently lead to less tryptophan in tumor. The TrMRS high-risk group presented with shorter overall survival, and further analysis confirmed TrMRS as an independent prognostic factor in gliomas. The nomograms uniting TrMRS with other prognostic factors manifested with satisfactory efficacy in predicting the prognosis of glioma patients. Additionally, analyses of tumor immune landscapes demonstrated that higher TrMRS was correlated with more immune cell infiltration and "hot" immunological phenotype. TrMRS was also demonstrated to be positively correlated with the expression of multiple immunotherapy targets, including PD1 and PD-L1. Finally, the TrMRS high-risk group manifested better predicted response to immune checkpoint inhibitors. In conclusion, our study illustrated the relationships between expression pattern of TrMGs and characteristics of gliomas, and presented a novel model based on TrMRS for prognosis prediction in glioma patients. The association between TrMRS and tumor immune microenvironment of gliomas indicated an important role of tryptophan and its metabolism in reshaping immune landscape and the potential ability to guide the application of immunotherapy for gliomas.

15.
Front Pharmacol ; 13: 1038272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438805

RESUMEN

Glioma is the most common malignant tumor in the central nervous system. The impact of metabolism on cancer development and the immune microenvironment landscape has recently gained broad attention. Purines are involved in multiple metabolic pathways. It has been proved that purine metabolism could regulate malignant biological behaviors and response to immune checkpoint inhibitors in multiple cancers. However, the relationship of purine metabolism with clinicopathological features and the immune landscape of glioma remains unclear. In this study, we explored the relationships between the expression of purine metabolism-related genes (PuMGs) and tumor features, including prognosis and microenvironment of glioma, based on analyses of 1,523 tumors from 4 public databases and our cohort. Consensus clustering based on 136 PuMGs classified the glioma patients into two clusters with significantly distinguished prognosis and immune microenvironment landscapes. Increased immune infiltration was associated with more aggressive gliomas. The prognostic Purine Metabolism-Related Genes Risk Signature (PuMRS), based on 11 critical PuMGs, stratified the patients into PuMRS low- and high-risk groups in the training set and was validated by validation sets from multiple cohorts. The high-risk group presented with significantly shorter overall survival, and further survival analysis demonstrated that the PuMRS was an independent prognostic factor in glioma. The nomogram combining PuMRS and other clinicopathological factors showed satisfactory accuracy in predicting glioma patients' prognosis. Furthermore, analyses of the tumor immune microenvironment suggested that higher PuMRS was correlated with increased immune cell infiltration and gene expression signatures of "hotË® tumors. Gliomas in the PuMRS high-risk group presented a higher expression level of multiple immune checkpoints, including PD-1 and PD-L1, and a better-predicted therapy response to immune checkpoint inhibitors. In conclusion, our study elucidated the relationship between the expression level of PuMGs and the aggressiveness of gliomas. Our study also endorsed the application of PuMRS to construct a new robust model for the prognosis evaluation of glioma patients. The correlations between the profiles of PuMGs expression and tumor immune microenvironment potentially provided guidance for immunotherapy in glioma.

16.
Front Pharmacol ; 13: 1072253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467068

RESUMEN

Glioma is one of the most lethal cancers and causes more than 200,000 deaths every year. Immunotherapy was an inspiring therapy for multiple cancers but failed in glioma treatment. The importance of serine and glycine and their metabolism has been well-recognized in the physiology of immune cells and microenvironment in multiple cancers. However, their correlation with prognosis, immune cells, and immune microenvironment of glioma remains unclear. In this study, we investigated the relationships between the expression pattern of serine and glycine metabolism-related genes (SGMGs) and clinicopathological features, prognosis, and tumor microenvironment in glioma based on comprehensive analyses of multiple public datasets and our cohort. According to the expression of SGMGs, we conducted the consensus clustering analysis to stratify all patients into four clusters with remarkably distinctive clinicopathological features, prognosis, immune cell infiltration, and immune microenvironment. Subsequently, a serine and glycine metabolism-related genes signature (SGMRS) was constructed based on five critical SGMGs in glioma to stratify patients into SGMRS high- and low-risk groups and tested for its prognostic value. Higher SGMRS expressed genes associated with the synthesis of serine and glycine at higher levels and manifested poorer prognosis. Besides, we confirmed that SGMRS was an independent prognostic factor and constructed nomograms with satisfactory prognosis prediction performance based on SGMRS and other factors. Analyzing the relationship between SGMRS and immune landscape, we found that higher SGMRS correlated with 'hotter' immunological phenotype and more immune cell infiltration. Furthermore, the expression levels of multiple immunotherapy-related targets, including PD-1, PD-L1, and B7-H3, were positively correlated with SGMRS, which was validated by the better predicted response to immune checkpoint inhibitors. In conclusion, our study explored the relationships between the expression pattern of SGMGs and tumor features and created novel models to predict the prognosis of glioma patients. The correlation of SGMRS with immune cells and microenvironment in gliomas suggested an essential role of serine and glycine metabolism in reforming immune cells and microenvironment. Finally, the results of our study endorsed the potential application of SGMRS to guide the selection of immunotherapy for gliomas.

17.
Front Neurol ; 12: 718032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630289

RESUMEN

Intracerebral hemorrhage (ICH) accounts for ~15% of all strokes and is associated with high mortality and disability rates. The systemic inflammation response index (SIRI) is a novel systemic inflammatory marker based on peripheral neutrophil, monocyte, and lymphocyte counts. This study aimed to evaluate the prognostic significance of admission SIRI in patients with spontaneous ICH and compare its predictive ability with that of the neutrophil-to-lymphocyte ratio (NLR). This retrospective study was conducted based on a prospectively collected database of patients with ICH between June 2016 and January 2019. Propensity score matching (PSM) was conducted to adjust for potential imbalances in the clinical parameters. A total of 403 patients were included in the original cohort. The optimal SIRI cut-off value was 2.76. After 1:1 PSM based on potential confounding variables, a new cohort containing 262 patients was established for further analysis. In the original cohort, SIRI served as an independent predictor of 3-month functional outcome [odds ratio (OR), 1.302; 95% CI, 1.120-1.512; p = 0.001] and 1-month mortality (OR, 1.072; 95% CI, 1.020-1.126; p = 0.006), while NLR was independently associated with only 3-month functional outcomes (OR, 1.051; 95% CI, 1.004-1.100; p = 0.031) and not 1-month mortality. The same applied to the PSM cohort. Receiver operating characteristic analyses and predictive models indicated that in most instances, SIRI was superior to NLR and their components in predicting the outcomes of patients with ICH. Our study found that SIRI is determined to be an independent predictive indicator for ICH patients in 3-month functional outcomes and 1-month mortality. The prognostic predictive ability of SIRI was stronger than that of NLR.

18.
Dis Markers ; 2021: 7055101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003392

RESUMEN

BACKGROUND: The combination of plasma fibrinogen and neutrophil to lymphocyte ratio (F-NLR) score is a novel inflammatory marker constituted by peripheral blood fibrinogen concentration and neutrophil to lymphocyte ratio. In the current study, we aim to explore the relationship between admission F-NLR score and intracerebral hemorrhage (ICH) and assess its prognostic predictive ability in ICH patients. METHODS: The original cohort was consecutively recruited from August 2014 to September 2017, and the validation cohort was consecutively recruited between October 2018 and March 2020. The primary outcomes were 3-month functional outcome and 1-month mortality. All statistical analyses were performed using SPSS and R software. RESULTS: A total of 431 and 251 ICH patients were included in original cohort and validation cohort, respectively. In the original cohort, F-NLR score could independently predict the 3-month functional outcome (adjusted OR 2.013, 95% CI 1.316-3.078, p = 0.001) and 1-month mortality (adjusted OR 3.036, 95% CI 1.965-4.693, p < 0.001). Receiver operation characteristic (ROC) analyses and predictive model comparison indicated that F-NLR score had a stronger predictive ability in the 3-month outcome and 1-month mortality. Validation cohort verified the results. CONCLUSION: F-NLR score was an independent indicator for both the 3-month functional outcome and 1-month mortality, and its prognostic predictive ability was superior to fibrinogen and NLR in both the original and the validation cohort.


Asunto(s)
Hemorragia Cerebral/sangre , Fibrinógeno/análisis , Linfocitos , Neutrófilos , Anciano , Femenino , Humanos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos
19.
Cancer Manag Res ; 13: 3259-3269, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33883939

RESUMEN

OBJECTIVE: To explore the prognostic value of preoperative fibrinogen to albumin ratio (FAR) in patients with glioblastoma (GBM) and its association with clinical characteristics. PATIENTS AND METHODS: A retrospective analysis was carried out on patients with newly diagnosed GBM who had undergone operation at the Department of Neurosurgery at West China Hospital between June 1st 2015 to June 31st 2018. Receiver operating characteristic (ROC) curves were performed to determine the optimal cut-off values for fibrinogen, albumin, neutrophil to lymphocyte ratio (NLR), and FAR by calculating the maximum Youden index. Kaplan-Meier curves and Cox regression analyses were applied to evaluate the prognostic value of FAR in GBM. Harrell concordance index (C-index) and Akaike information criterion (AIC) were calculated to compare different prognostic models. RESULTS: A total of 206 GBM patients were included in this research. The optimal cut-off value for fibrinogen, albumin, NLR, and FAR were 2.57, 42.4, 2.28, and 0.068 respectively. High FAR was significantly related to older age, KPS≤80, IDH-1 wildtype, presence of preoperative seizures, higher NLR, and tumor location. In Cox regression analyses, high FAR was significantly associated with poor prognosis. Prognostic models including FAR had the largest C-index and lowest AIC. CONCLUSION: FAR was determined to be an independent risk factor of prognosis in patients with newly-diagnosed GBM. And the prognostic predictive ability of FAR is stronger than fibrinogen and albumin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA