Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant Cell ; 35(4): 1167-1185, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36530163

RESUMEN

Carotenoids are natural pigments that influence the color of citrus fruit. The red-colored carotenoid ß-citraurin is responsible for the peel color in "Newhall" orange (Citrus sinensis). Although jasmonates are known to regulate the biosynthesis and accumulation of carotenoids, their effects on ß-citraurin biosynthesis in citrus fruit remain unclear. Here, we determined that treatment with methyl jasmonate (MeJA) significantly promotes fruit coloration and ß-citraurin production in "Newhall" orange. A MeJA treatment induced the expression of CsMYC2, which encodes a transcription factor that serves as a master regulator of jasmonate responses. CsMYC2 bound the promoter of the gene that encodes carotenoid cleavage dioxygenase 4b (CsCCD4b), the key gene for ß-citraurin biosynthesis, and the promoters of genes that encode phytoene synthase (CsPSY), lycopene ß-cyclase (CsLCYb), and ß-carotene hydroxylase (CsBCH) and induced their expression. In addition, CsMYC2 promoted CsMPK6 expression. Notably, we found that CsMPK6 interacted with CsMYC2 and that this interaction decreased the stability and DNA-binding activity of CsMYC2. Thus, we conclude that negative feedback regulation attenuates JA signaling during the jasmonate-induced coloration of citrus fruit. Together, our findings indicate that jasmonates induce ß-citraurin biosynthesis in citrus by activating a CsMPK6-CsMYC2 cascade, thereby affecting fruit coloration.


Asunto(s)
Citrus sinensis , Citrus , Carotenoides/metabolismo , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Geranilgeranil-Difosfato Geranilgeraniltransferasa
2.
Soft Matter ; 20(37): 7357-7361, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38935026

RESUMEN

Boundary conditions between a porous solid and a fluid has been a long-standing problem in modeling porous media. For deformable poroelastic materials such as hydrogels, the question is further complicated by the elastic stress from the solid network. Recently, an interfacial permeability condition has been developed from the principle of positive energy dissipation on the hydrogel-fluid interface. Although this boundary condition has been used in flow computations and yielded reasonable predictions, it contains an interfacial permeability η as a phenomenological parameter. In this work, we use pore-scale models of flow into a periodic array of solid cylinders or parallel holes to determine η as a function of the pore size and porosity. This provides a means to evaluate the interfacial permeability for a wide range of poroelastic materials, including hydrogels, foams and biological tissues, to enable realistic flow simulations.

3.
Soft Matter ; 20(35): 6940-6951, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39163000

RESUMEN

We investigate theoretically the one-dimensional compression of a hydrogel layer by a uniform fluid flow normal to the gel surface. The flow is driven by a pressure drop across the gel layer, which is modeled as a poroelastic medium. The novelty comes from considering, for the first time, the impact of interfacial permeability and compression. This leads to several new features for the flow and gel compression. As the pressure simultaneously drives the Darcy flow through the pores and compresses the gel, the flux-pressure relationship may become non-monotonic. Most interestingly, we discover two types of hysteresis when the pressure or the flux is controlled, which are also confirmed by transient numerical simulations. The first type of hysteresis stems from the interplay between the gel compression at the upstream interface and that in the bulk of the gel, and would not be predicted by models that ignore the interfacial compression. The second type hinges on strain-hardening in the gel that maintains a non-vanishing permeability at high pressure. Finally, we suggest experimental setups and conditions to seek such hystereses in real gels.

4.
Soft Matter ; 20(27): 5389-5406, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38932626

RESUMEN

Two aspects of hydrogel mechanics have been studied separately in the past. The first is the swelling and deswelling of gels in a quiescent solvent bath triggered by an environmental stimulus such as a change in temperature or pH, and the second is the solvent flow around and into a gel domain, driven by an external pressure gradient or moving boundary. The former neglects convection due to external flow, whereas the latter neglects solvent diffusion driven by a gradient in chemical potential. Motivated by engineering and biomedical applications where both aspects coexist and potentially interact with each other, this work presents a poroelasticity model that integrates these two aspects into a single framework, and demonstrates how the coupling between the two gives rise to novel physics in relatively simple one-dimensional and two-dimensional flows.

5.
Small ; 19(24): e2300051, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36896999

RESUMEN

Cobalt phthalocyanine (CoPc) has attracted particular interest owing to its excellent activity during the electrochemical CO2 conversion to CO. However, the efficient utilization of CoPc at industrially relevant current densities is still a challenge owing to its nonconductive property, agglomeration, and unfavorable conductive substrate design. Here, a microstructure design strategy for dispersing CoPc molecules on a carbon substrate for efficient CO2 transport during CO2 electrolysis is proposed and demonstrated. The highly dispersed CoPc is loaded on a macroporous hollow nanocarbon sheet to act as the catalyst (CoPc/CS). The unique interconnected and macroporous structure of the carbon sheet forms a large specific surface area to anchor CoPc with high dispersion and simultaneously boosts the mass transport of reactants in the catalyst layer, significantly improving the electrochemical performance. By employing a zero-gap flow cell, the designed catalyst can mediate CO2 to CO with a high full-cell energy efficiency of 57% at 200 mA cm-2 .

6.
Small ; 19(43): e2303016, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37376828

RESUMEN

Ni single-atom catalysts (SACs) are appealing for electrochemical reduction CO2 reduction (CO2 RR). However, regulating the balance between the activity and conductivity remains a challenge to Ni SACs due to the limitation of substrates structure. Herein, the intrinsic performance enhancement of Ni SACs anchored on quasi-one-dimensional graphene nanoribbons (GNRs) synthesized is demonstrated by longitudinal unzipping carbon nanotubes (CNTs). The abundant functional groups on GNRs can absorb Ni atoms to form rich Ni-N4 -C sites during the anchoring process, providing a high intrinsic activity. In addition, the GNRs, which maintain a quasi-one-dimensional structure and possess a high conductivity, interconnect with each other and form a conductive porous framework. The catalyst yields a 44 mA cm-2 CO partial current density and 96% faradaic efficiency of CO (FECO ) at -1.1 V vs RHE in an H-cell. By adopting a membrane electrode assembly (MEA) flow cell, a 95% FECO and 2.4 V cell voltage are achieved at 200 mA cm-2 current density. This work provides a rational way to synthesize Ni SACs with a high Ni atom loading, porous morphology, and high conductivity with potential industrial applications.

7.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012719

RESUMEN

Auxin plays an important role in regulating plant development, and Auxin/indole acetic acid (Aux/IAA) is a type of auxin-responsive gene and plays an important role in auxin signaling; to date, although 29 Aux/IAA proteins have been reported in Abrabidopsis thaliana, only parts of the Aux/IAA family gene functions have been identified. We previously reported that a bud sport of 'Longfeng' (LF) apple (Malus domestica), named 'Grand longfeng' (GLF), which showed a larger fruit size than LF, has lower expression of MdAux/IAA2. In this study, we identified the function of the MdAux/IAA2 gene in apple fruit size difference using Agrobacterium-mediated genetic transformation. Overexpression of MdAux/IAA2 decreased the apple flesh callus increment and caused a smaller globular cell size. In addition, overexpression of MdAux/IAA2 in GLF fruit resulted in the reduction of apple fruit size, weight, and cell size, while silencing MdAux/IAA2 in LF apple fruit resulted in an increase in apple fruit weight and cell size. We suggest that the high auxin content depressed the expression of MdAux/IAA2, and that the downregulated expression of MdAux/IAA2 led to the formation of GLF. Our study suggests a mechanism for fruit size regulation in plants and we will explore the transcription factors functioning in this process in the future.


Asunto(s)
Malus , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant Biotechnol J ; 19(2): 311-323, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32885918

RESUMEN

Salt stress dramatically impedes plant growth and development as well as crop yield. The apple production regions are reduced every year, because of the secondary salt damage by improper fertilization and irrigation. To expand the cultivation area of apple (Malus domestica) and select salt-resistant varieties, the mechanism of salt tolerance in apple is necessary to be clarified. The miR156/SPL regulatory module plays key roles in embryogenesis, morphogenesis, life cycle stage transformation, flower formation and other processes. However, its roles in the mechanisms of salt tolerance are unknown. In order to elucidate the mechanism of 156/SPL regulating salt stress in apple, we performed RLM-5' RACE and stable genetic transformation technology to verify that both mdm-MIR156a and MdSPL13 responded to salt stress in apple and that the latter was the target of the former. MIR156a overexpression weakened salt resistance in apple whereas MdSPL13 overexpression strengthened it. A total of 6094 differentially expressed genes relative to nontransgenic apple plants were found by RNA-Seq analysis of MdSPL13OE. Further verification indicated that MdSPL13 targeted the MdWRKY100 gene promoter. Moreover, MdWRKY100 overexpression enhanced salt tolerance in apple. Our results revealed that the miR156/SPL module regulates salt tolerance by up-regulating MdWRKY100 in apple. This study is the first to elucidate the mechanism underlying the miRNA network response to salt stress in apple and provides theoretical and empirical bases and genetic resources for the molecular breeding of salt tolerance in apple.


Asunto(s)
Malus , MicroARNs , Regulación de la Expresión Génica de las Plantas/genética , Malus/genética , Malus/metabolismo , MicroARNs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino , Tolerancia a la Sal/genética , Factores de Transcripción/genética
9.
Plant Physiol ; 182(4): 2035-2046, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32047049

RESUMEN

Sugar content is an important trait of fleshy fruit, and elevating Suc levels is a major goal in horticultural crop breeding. Here, we examined the sugar content in two varieties of the Ussurian pear (Pyrus ussuriensis), 'Nanguo' (NG) and its bud sport (BNG), and we found that Suc content was higher in BNG fruit than in NG fruit. We compared the transcriptomes of the two varieties using RNA sequencing and identified a SWEET (Sugars Will Eventually be Exported Transporter) gene, PuSWEET15, expressed at higher levels in BNG fruit. Heterologous expression of PuSWEET15 in a SUSY7/ura yeast (Saccharomyces cerevisiae) strain showed that PuSWEET15 is an active Suc transporter. Overexpression of PuSWEET15 in NG pear fruit increased Suc content, while silencing of PuSWEET15 in BNG fruit decreased Suc content. The WRKY transcription factor PuWRKY31 was also expressed more highly in BNG fruit than in NG fruit, and we found that PuWRKY31 bound to the PuSWEET15 promoter and induced its transcription. The histone acetylation level of the PuWRKY31 promoter was higher in BNG fruit, suggesting a mechanism by which Suc levels can be elevated.


Asunto(s)
Frutas/metabolismo , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Pyrus/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Histonas/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Pyrus/genética , Sacarosa/metabolismo , Factores de Transcripción/genética
10.
New Phytol ; 226(6): 1781-1795, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083754

RESUMEN

The gaseous plant hormone ethylene induces the ripening of climacteric fruit, including apple (Malus domestica). Another phytohormone, auxin, is known to promote ethylene production in many horticultural crops, but the regulatory mechanism remains unclear. Here, we found that auxin application induces ethylene production in apple fruit before the stage of commercial harvest, when they are not otherwise capable of ripening naturally. The expression of MdARF5, a member of the auxin response factor transcription factor (TF) family involved in the auxin signaling pathway, was enhanced by treatment with the synthetic auxin naphthaleneacetic acid (NAA). Further studies revealed that MdARF5 binds to the promoter of MdERF2, encoding a TF in the ethylene signaling pathway, as well as the promoters of two 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes (MdACS3a and MdACS1) and an ACC oxidase (ACO) gene, MdACO1, all of which encode key steps in ethylene biosynthesis, thereby inducing their expression. We also observed that auxin-induced ethylene production was dependent on the methylation of the MdACS3a promoter. Our findings reveal that auxin induces ethylene biosynthesis in apple fruit through activation of MdARF5 expression.


Asunto(s)
Malus , Etilenos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Eur Phys J E Soft Matter ; 42(3): 34, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30888524

RESUMEN

An extremely thin gas film was found between a sphere and a free surface when the sphere impacted onto a water pool. That might influence the generation and evolution of water entry cavity. However, it is quite difficult to be captured through normal numerical and experimental tests. In this work, by using a finite element method we investigate the water entry of a hydrophobic sphere with gas viscosity artificially increased. The air film rupture in the early stage, contact line dynamics on a curved solid surface, and air pocket formation are investigated. The numerical results reveal that the lifetime of the gas film can be predicted by a viscous squeezing flow model qualitatively well. That relates to the fact that the gas film is much thinner than the diameter of the sphere, even when the gas viscosity is 100 times as large as the liquid one. However, inviscid flow can be found in the most part of the liquid bulk. The free surface profile (or the gas film profile) is then determined by the impact speed, namely the Weber number. More importantly, after the "gas" film ruptures at the bottom of the sphere, a contact line is generated. The contact line retracts along the sphere's surface, and the retracting speed fulfils [Formula: see text] law generally. This implies that the retracting process of the gas film is dominated by the inertia-capillary balance, rather than simply by the visco-capillary.

12.
Plant Sci ; 346: 112131, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38801863

RESUMEN

Uneven coloration is a common phenomenon in citrus fruit during the ripening stage, as affects the appearance and economic value of the fruit. The elevated expression of CsERF003 during the degreening process of both lemon and satsuma mandarin peels was reported. In this research, a similar performance of CsERF003 in the pericarp coloration process was also identified by transcriptome analysis of 'Fengjie 72-1' navel orange and Lane Late navel orange. However, the regulatory mechanism of CsERF003 is not clear yet. Overexpression of CsERF003 could deepen the color of citrus callus and promote peel degreening of Newhall navel orange, which was attributed to the upregulation of genes involved in chlorophyll degradation and carotenoid synthesis. Furthermore, CsERF003 acted as an activator to promote the expression of CsLCYE, but couldn't activate the expression of CsLCYB1 and CsLCYB2; CsERF003 could also bind to the promoter of CsSGR to activate its expression. Together, our findings shed light on the regulatory mechanism of CsERF003 in chlorophyll degradation and carotenoid accumulation, particularly in the α-branch of carotenoid metabolism. These insights offer valuable perspectives for the genetic enhancement of peel coloration in citrus.


Asunto(s)
Carotenoides , Clorofila , Citrus , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Clorofila/metabolismo , Carotenoides/metabolismo , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citrus/metabolismo , Citrus/genética , Pigmentación/genética
13.
J R Soc Interface ; 20(198): 20220634, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36628531

RESUMEN

Albuminuria occurs when albumin leaks abnormally into the urine. Its mechanism remains unclear. A gel-compression hypothesis attributes the glomerular barrier to compression of the glomerular basement membrane (GBM) as a gel layer. Loss of podocyte foot processes would allow the gel layer to expand circumferentially, enlarge its pores and leak albumin into the urine. To test this hypothesis, we develop a poroelastic model of the GBM. It predicts GBM compression in healthy glomerulus and GBM expansion in the diseased state, essentially confirming the hypothesis. However, by itself, the gel compression and expansion mechanism fails to account for two features of albuminuria: the reduction in filtration flux and the thickening of the GBM. A second mechanism, the constriction of flow area at the slit diaphragm downstream of the GBM, must be included. The cooperation between the two mechanisms produces the amount of increase in GBM porosity expected in vivo in a mutant mouse model, and also captures the two in vivo features of reduced filtration flux and increased GBM thickness. Finally, the model supports the idea that in the healthy glomerulus, gel compression may help maintain a roughly constant filtration flux under varying filtration pressure.


Asunto(s)
Albuminuria , Podocitos , Ratones , Animales , Membrana Basal Glomerular , Modelos Animales de Enfermedad , Albúminas
14.
ACS Appl Mater Interfaces ; 15(46): 53429-53435, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37957114

RESUMEN

In alkaline and neutral zero-gap CO2 electrolyzers, the carbon utilization efficiency of the electrocatalytic CO2 reduction to CO is less than 50% because of inherently homogeneous reactions. Utilization of the bipolar membrane (BPM) electrolyzer can effectively suppress (bi)carbonate formation and parasitic CO2 losses; however, an excessive concentration of H+ in the catalyst layer (CL) significantly hinders the activity and selectivity for CO2 reduction. Here, we report a microenvironment regulation strategy that controls the CL thickness and ionomer content to regulate local CO2 transport and the local pH within the CL. We report 80% faradaic efficiency of CO at a current density of 400 mA/cm2 without the use of a buffering layer, exceeding that of state-of-the-art catalysts with a buffering layer. A carbon utilization efficiency of 63.6% at 400 mA/cm2 is also obtained. This study demonstrates the significance of regulating the microenvironment of the CL in a BPM system.

15.
ACS Appl Mater Interfaces ; 14(49): 54840-54847, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36459667

RESUMEN

Direct electrolytic CO2 capture solution (e.g., bicarbonate), which bypasses the energy-intensive processes of CO2 desorption, offers a unique route for CO2 conversion to fuels or value-added chemicals. Nonprecious Ni single-atom catalysts (SACs) anchored on metal-organic frameworks (MOFs) possess abundant porous structures and exhibit a high selectivity for CO production. However, these MOF-derived Ni SACs are usually synthesized by a series of complex procedures, and their abundant micropores (<2 nm) also reduce the local reactant transport in the catalysts. Herein, we report a simple one-step pyrolysis method to prepare a MOF-derived Ni SAC that can efficiently boost bicarbonate conversion to CO. The abundant mesopores around 35.4 nm significantly enhance the transport of local reactants in the catalysts. At a high current density of 100 mA/cm2, the tailored catalyst shows 67.2% Faradaic efficiency of CO, which, to the best of our knowledge, exceeds the state-of-the-art precious Ag nanoparticle catalysts reported so far. This study highlights the significance of developing nonprecious catalysts for employment in large-scale bicarbonate electrolysis conversion devices.

16.
Front Plant Sci ; 11: 592540, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519848

RESUMEN

Fruit size is an important economic trait that is controlled by multiple genes. However, the regulatory mechanism for fruit size remains poorly understood. A bud sport variety of "Longfeng" (LF) apple (Malus domestica) was identified and named "Grand Longfeng" (GLF). The fruit size of GLF is larger than that of LF, and both varieties are diploid. We found that the cell size in GLF fruit was larger than that of LF. Then, we compared the fruit transcriptomes of the two varieties using RNA-Seq technology. A total of 1166 differentially expressed genes (DEGs) were detected between GLF and LF fruits. The KEGG analysis revealed that the phytohormone pathway was the most enriched, in which most of the DEGs were related to auxin signaling. Moreover, the endogenous auxin levels of GLF fruit were higher than those of LF. The expressions of auxin synthetic genes, including MdTAR1 and MdYUCCA6, were higher in GLF fruit than LF. Collectively, our findings suggest that auxin plays an important role in fruit size development.

17.
Nat Commun ; 10(1): 2531, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213604

RESUMEN

Droplets or puddles tend to freeze from the propagation of a single freeze front. In contrast, videographers have shown that as soap bubbles freeze, a plethora of growing ice crystals can swirl around in a beautiful effect visually reminiscent of a snow globe. However, the underlying physics of how bubbles freeze has not been studied. Here, we characterize the physics of soap bubbles freezing on an icy substrate and reveal two distinct modes of freezing. The first mode, occurring for isothermally supercooled bubbles, generates a strong Marangoni flow that entrains ice crystals to produce the aforementioned snow globe effect. The second mode occurs when using a cold stage in a warm ambient, resulting in a bottom-up freeze front that eventually halts due to poor conduction along the bubble. Blending experiments, scaling analysis, and numerical methods, the dynamics of the freeze fronts and Marangoni flows are characterized.

18.
ACS Appl Mater Interfaces ; 10(38): 32874-32884, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30221924

RESUMEN

Despite exceptional recent advances in tailoring the wettability of surfaces, to date, no engineered surface can passively suppress the in-plane growth of frost that invariably occurs in humid, subfreezing environments. Here, we show that up to 90% of a surface can exhibit passive antifrosting by using chemical or physical wettability patterns to template "ice stripes" across the surface. As ice exhibits a depressed vapor pressure relative to liquid water, these sacrificial ice stripes siphon the supersaturated water vapor to keep the intermediate surface areas dry from dew and frost. Further, we show that when these sacrificial ice stripes are elevated atop microfins, they diffusively coarsen in a suspended state above the surface. The suspended state of the coarsening ice results in a diffusive growth rate an order of magnitude slower than frost coarsening directly on a solid substrate and should also minimize its adhesive strength to the surface.

19.
J Colloid Interface Sci ; 290(1): 281-8, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16122548

RESUMEN

Nematic-isotropic interfaces exhibit novel dynamics due to anchoring of the liquid crystal molecules on the interface. The objective of this study is to demonstrate the consequences of such dynamics in the flow field created by an elongated nematic drop retracting in an isotropic matrix. This is accomplished by two-dimensional flow simulations using a diffuse-interface model. By exploring the coupling among bulk liquid crystal orientation, surface anchoring and the flow field, we show that the anchoring energy plays a fundamental role in the interfacial dynamics of nematic liquids. In particular, it gives rise to a dynamic interfacial tension that depends on the bulk orientation. Tangential gradient of the interfacial tension drives a Marangoni flow near the nematic-isotropic interface. Besides, the anchoring energy produces an additional normal force on the interface that, together with the interfacial tension, determines the movement of the interface. Consequently, a nematic drop with planar anchoring retracts more slowly than a Newtonian drop, while one with homeotropic anchoring retracts faster than a Newtonian drop. The numerical results are consistent with prior theories for interfacial rheology and experimental observations.

20.
Langmuir ; 24(7): 3099-110, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18284259

RESUMEN

We use dynamic simulations to explore the pairwise interaction and multiparticle assembly of droplets suspended in a nematic liquid crystal. The computation is based on a regularized Leslie-Ericksen theory that allows orientational defects. The homeotropic anchoring on the drop surface is of sufficient strength as to produce a satellite point defect near the droplet. Based on the position of the defects relative to the host droplet and the far-field molecular orientation, we have identified five types of pairwise attractive and repulsive forces. In particular, long-range attraction between two droplets with their line of centers along the far-field orientation decays as R-4, with R being the center-to-center separation. This agrees with prior static calculations and a phenomenological model that treats the attraction as that between two dipoles. For interaction in shorter ranges, our simulations agree qualitatively with experimental measurements and static calculations. However, there is considerable quantitative discrepancy among the few existing studies and our simulation. We suggest that this is partly due to the dynamic nature of the process, which has never been taken into account in prior calculations. Multidrop simulations show the formation of linear chains through pairwise interactions between nearby droplets. Parallel chains repel or attract each other depending on the relative orientation of the drop-to-defect vector. These are consistent with experimental observations of chain formation and two-dimensional self-assembly in bulk nematics and smectic-C films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA