Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38948803

RESUMEN

About one-third of all human cancers encode abnormal RAS proteins locked in a constitutively activated state to drive malignant transformation and uncontrolled tumor growth. Despite progress in development of small molecules for treatment of mutant KRAS cancers, there is a need for a pan-RAS inhibitor that is effective against all RAS isoforms and variants and that avoids drug resistance. We have previously shown that the naturally occurring bacterial enzyme RAS/RAP1-specific endopeptidase (RRSP) is a potent RAS degrader that can be re-engineered as a biologic therapy to induce regression of colorectal, breast, and pancreatic tumors. Here, we have developed a strategy for in vivo expression of this RAS degrader via mRNA delivery using a synthetic nonviral gene delivery platform composed of the poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) block copolymer conjugated to a dendritic cationic peptide (PPDP2). Using this strategy, PPDP2 is shown to deliver mRNA to both human and mouse pancreatic cells resulting in RRSP gene expression, activity, and loss of cell proliferation. Further, pancreatic tumors are reduced with residual tumors lacking detectable RAS and phosphorylated ERK. These data support that mRNA-loaded synthetic nanocarrier delivery of a RAS degrader can interrupt the RAS signaling system within pancreatic cancer cells while avoiding side effects during therapy.

2.
Nat Nanotechnol ; 19(5): 698-704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228804

RESUMEN

Protein adsorption onto nanomaterials often results in denaturation and loss of bioactivity. Controlling the adsorption process to maintain the protein structure and function has potential for a range of applications. Here we report that self-assembled poly(propylene sulfone) (PPSU) nanoparticles support the controlled formation of multicomponent enzyme and antibody coatings and maintain their bioactivity. Simulations indicate that hydrophobic patches on protein surfaces induce a site-specific dipole relaxation of PPSU assemblies to non-covalently anchor the proteins without disrupting the protein hydrogen bonding or structure. As a proof of concept, a nanotherapy employing multiple mast-cell-targeted antibodies for preventing anaphylaxis is demonstrated in a humanized mouse model. PPSU nanoparticles displaying an optimized ratio of co-adsorbed anti-Siglec-6 and anti-FcεRIα antibodies effectively inhibit mast cell activation and degranulation, preventing anaphylaxis. Protein immobilization on PPSU surfaces provides a simple and rapid platform for the development of targeted protein nanomedicines.


Asunto(s)
Mastocitos , Nanopartículas , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Animales , Ratones , Adsorción , Humanos , Nanopartículas/química , Nanomedicina/métodos , Anafilaxia , Polipropilenos/química , Degranulación de la Célula/efectos de los fármacos
3.
Res Sq ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38746232

RESUMEN

The development of subunit vaccines that mimic the molecular complexity of attenuated vaccines has been limited by the difficulty of intracellular co-delivery of multiple chemically diverse payloads at controllable concentrations. We report on hierarchical hydrogel depots employing simple poly(propylene sulfone) homopolymers to enable ratiometric loading of a protein antigen and four physicochemically distinct adjuvants in a hierarchical manner. The optimized vaccine consisted of immunostimulants either adsorbed to or encapsulated within nanogels, which were capable of noncovalent anchoring to subcutaneous tissues. These 5-component nanogel vaccines demonstrated enhanced humoral and cell-mediated immune responses compared to formulations with standard single adjuvant and antigen pairing. The use of a single simple homopolymer capable of rapid and stable loading and intracellular delivery of diverse molecular cargoes holds promise for facile development and optimization of scalable subunit vaccines and complex therapeutic formulations for a wide range of biomedical applications.

4.
J Control Release ; 357: 484-497, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37068522

RESUMEN

Many drugs are poorly water-soluble and suffer from low bioavailability. Metal-phenolic network (MPN), a hydrophilic thin layer such as tannic acid (TA)-FeIII network, has been recently used to encapsulate hydrophobic drugs to improve their bioavailability. However, it remains challenging to synthesize nanocapsules of a wide variety of hydrophobic drugs and to scale up the production in a continuous manner. Here, we present a microfluidic synthesis method to continuously produce TA-FeIII network nanocapsules of hydrophobic drugs. We hypothesize that nanocapsules can continuously be formed only when the microfluidic mixing timescale is shorter than the drug's nucleation timescale. The hypothesis was tested on three hydrophobic drugs - paclitaxel, curcumin, and vitamin D with varying solubility and nucleation timescale. The proposed mechanism was validated by successfully predicting the synthesis outcomes. The microfluidically-synthesized nanocapsules had well-controlled sizes of 100-200 nm, high drug loadings of 40-70%, and a throughput of up to 70 mg hr-1 per channel. The release kinetics, cellular uptake, and cytotoxicity were further evaluated. The effect of coating constituents on nanocapsule properties were characterized. Fe content of nanocapsules was reported. The stability of nanocapsules at different temperatures and pHs were also tested. The results suggest that the present method can provide a quantitative guideline to predictively design a continuous synthesis scheme for hydrophobic drug encapsulation via MPN nanocapsules with scaled-up capability.


Asunto(s)
Nanocápsulas , Nanocápsulas/química , Compuestos Férricos , Microfluídica , Paclitaxel/química , Tamaño de la Partícula
5.
iScience ; 25(7): 104555, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35769884

RESUMEN

Plasmid DNA (pDNA) transfection is advantageous for gene therapies requiring larger genetic elements, including "all-in-one" CRISPR/Cas9 plasmids, but is limited by toxicity as well as poor intracellular release and transfection efficiency in immune cell populations. Here, we developed a synthetic non-viral gene delivery platform composed of poly(ethylene glycol)-b-poly(propylene sulfide) copolymers linked to a cationic dendritic peptide (DP) via a reduceable bond, PEG-b-PPS-ss-DP (PPDP). A library of self-assembling PPDP polymers was synthesized and screened to identify optimal constructs capable of transfecting macrophages with small (pCMV-DsRed, 4.6 kb) and large (pL-CRISPR.EFS.tRFP, 11.7 kb) plasmids. The optimized PPDP construct transfected macrophages, fibroblasts, dendritic cells, and T cells more efficiently and with less toxicity than a commercial Lipo2K reagent, regardless of pDNA size and under standard culture conditions in the presence of serum. The PPDP technology described herein is a stimuli-responsive polymeric nanovector that can be leveraged to meet diverse challenges in gene delivery.

6.
Sci Adv ; 7(32)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34362742

RESUMEN

Systemic therapy of Gram-negative sepsis remains challenging. Polymyxin B (PMB) is well suited for sepsis therapy due to the endotoxin affinity and antibacterial activity. However, the dose-limiting toxicity has limited its systemic use in sepsis patients. For safe systemic use of PMB, we have developed a nanoparticulate system, called D-TZP, which selectively reduces the toxicity to mammalian cells but retains the therapeutic activities of PMB. D-TZP consists of an iron-complexed tannic acid nanocapsule containing a vitamin D core, coated with PMB and a chitosan derivative that controls the interaction of PMB with endotoxin, bacteria, and host cells. D-TZP attenuated the membrane toxicity associated with PMB but retained the ability of PMB to inactivate endotoxin and kill Gram-negative bacteria. Upon intravenous injection, D-TZP protected animals from pre-established endotoxemia and polymicrobial sepsis, showing no systemic toxicities inherent to PMB. These results support D-TZP as a safe and effective systemic intervention of sepsis.


Asunto(s)
Nanocápsulas , Sepsis , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Endotoxinas/uso terapéutico , Humanos , Mamíferos , Nanocápsulas/uso terapéutico , Polimixina B/efectos adversos , Sepsis/tratamiento farmacológico
7.
ACS Nano ; 15(3): 4576-4593, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33645963

RESUMEN

For systemic delivery of small interfering RNA (siRNA) to solid tumors, the carrier must circulate avoiding premature degradation, extravasate and penetrate tumors, enter target cells, traffic to the intracellular destination, and release siRNA for gene silencing. However, existing siRNA carriers, which typically exhibit positive charges, fall short of these requirements by a large margin; thus, systemic delivery of siRNA to tumors remains a significant challenge. To overcome the limitations of existing approaches, we have developed a carrier of siRNA, called "Nanosac", a noncationic soft polyphenol nanocapsule. A siRNA-loaded Nanosac is produced by sequential coating of mesoporous silica nanoparticles (MSNs) with siRNA and polydopamine, followed by removal of the sacrificial MSN core. The Nanosac recruits serum albumin, co-opts caveolae-mediated endocytosis to enter tumor cells, and efficiently silences target genes. The softness of Nanosac improves extravasation and penetration into tumors compared to its hard counterpart. As a carrier of siRNA targeting PD-L1, Nanosac induces a significant attenuation of CT26 tumor growth by immune checkpoint blockade. These results support the utility of Nanosac in the systemic delivery of siRNA for solid tumor therapy.


Asunto(s)
Nanocápsulas , Nanopartículas , Línea Celular Tumoral , Polifenoles , ARN Interferente Pequeño/genética , Dióxido de Silicio
8.
Biomaterials ; 262: 120344, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32905902

RESUMEN

Bacterial pathogens residing in host macrophages in intracellular infections are hard to eradicate because traditional antibiotics do not readily enter the cells or get eliminated via efflux pumps. To overcome this challenge, we developed a new particle formulation with a size amenable to selective macrophage uptake, loaded with two antibacterial agents - pexiganan and silver (Ag) nanoparticles. Here, pexiganan was loaded in 600 nm poly(lactic-co-glycolic acid) (PLGA) particles (NP), and the particle surface was modified with an iron-tannic acid supramolecular complex (pTA) that help attach Ag nanoparticles. PLGA particles coated with Ag (NP-pTA-Ag) were taken up by macrophages, but not by non-phagocytic cells, such as fibroblasts, reducing non-specific toxicity associated with Ag nanoparticles. NP-pTA-Ag loaded with pexiganan (Pex@NP-pTA-Ag) showed more potent antibacterial activity against various intracellular pathogens than NP-pTA-Ag or Pex@NP (pexiganan-loaded NP with no Ag), suggesting a collaborative function between pexiganan and Ag nanoparticles. Mouse whole-body imaging demonstrated that, upon intravenous injection, NP-pTA-Ag quickly accumulated in the liver and spleen, where intracellular bacteria tend to reside. These results support that Pex@NP-pTA-Ag is a promising strategy for the treatment of intracellular bacterial infection.


Asunto(s)
Infecciones Bacterianas , Nanopartículas del Metal , Nanopartículas , Animales , Antibacterianos/farmacología , Macrófagos , Ratones , Plata
9.
Ther Deliv ; 9(6): 435-450, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29722636

RESUMEN

Sepsis and septic shock are life-threating conditions, which form a continuum of the body's response to overwhelming infection. The current treatment consists of fluid and metabolic resuscitation, hemodynamic and end-organ support, and timely initiation of antibiotics. However, these measures may be ineffective and the sepsis-related mortality toll remains substantial; therefore, an urgent need exists for new therapies. Recently, several nanoparticle (NP) systems have shown excellent protective effects against sepsis in preclinical models, suggesting a potential utility in the management of sepsis and septic shock. These NPs serve as antibacterial agents, provide platforms to immobilize endotoxin adsorbents, interact with inflammatory cells to restore homeostasis and detect biomarkers of sepsis for timely diagnosis. This review discusses the recent developments in NP-based approaches for the treatment of sepsis.


Asunto(s)
Portadores de Fármacos/química , Circulación Extracorporea/métodos , Nanomedicina/métodos , Nanopartículas/química , Sepsis/tratamiento farmacológico , Animales , Antibacterianos/administración & dosificación , Antioxidantes/administración & dosificación , Biomarcadores/análisis , Modelos Animales de Enfermedad , Endotoxinas/antagonistas & inhibidores , Circulación Extracorporea/instrumentación , Fibrinolíticos/administración & dosificación , Humanos , Factores Inmunológicos/administración & dosificación , Nanomedicina/tendencias , Sepsis/diagnóstico , Sepsis/microbiología , Sepsis/mortalidad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA