Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Neurodegener ; 15(1): 44, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727516

RESUMEN

BACKGROUND: Identified as an Alzheimer's disease (AD) susceptibility gene by genome wide-association studies, BIN1 has 10 isoforms that are expressed in the Central Nervous System (CNS). The distribution of these isoforms in different cell types, as well as their role in AD pathology still remains unclear. METHODS: Utilizing antibodies targeting specific BIN1 epitopes in human post-mortem tissue and analyzing mRNA expression data from purified microglia, we identified three isoforms expressed in neurons and astrocytes (isoforms 1, 2 and 3) and four isoforms expressed in microglia (isoforms 6, 9, 10 and 12). The abundance of selected peptides, which correspond to groups of BIN1 protein isoforms, was measured in dorsolateral prefrontal cortex, and their relation to neuropathological features of AD was assessed. RESULTS: Peptides contained in exon 7 of BIN1's N-BAR domain were found to be significantly associated with AD-related traits and, particularly, tau tangles. Decreased expression of BIN1 isoforms containing exon 7 is associated with greater accumulation of tangles and subsequent cognitive decline, with astrocytic rather than neuronal BIN1 being the more likely culprit. These effects are independent of the BIN1 AD risk variant. CONCLUSIONS: Exploring the molecular mechanisms of specific BIN1 isoforms expressed by astrocytes may open new avenues for modulating the accumulation of Tau pathology in AD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Astrocitos/metabolismo , Microglía/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Nat Commun ; 11(1): 6129, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257666

RESUMEN

The extent of microglial heterogeneity in humans remains a central yet poorly explored question in light of the development of therapies targeting this cell type. Here, we investigate the population structure of live microglia purified from human cerebral cortex samples obtained at autopsy and during neurosurgical procedures. Using single cell RNA sequencing, we find that some subsets are enriched for disease-related genes and RNA signatures. We confirm the presence of four of these microglial subpopulations histologically and illustrate the utility of our data by characterizing further microglial cluster 7, enriched for genes depleted in the cortex of individuals with Alzheimer's disease (AD). Histologically, these cluster 7 microglia are reduced in frequency in AD tissue, and we validate this observation in an independent set of single nucleus data. Thus, our live human microglia identify a range of subtypes, and we prioritize one of these as being altered in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Enfermedad de Alzheimer/genética , Corteza Cerebral/metabolismo , Femenino , Humanos , Masculino , Microglía/patología , Células Mieloides , Análisis de Secuencia de ARN
3.
Nat Commun ; 9(1): 539, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29416036

RESUMEN

With a rapidly aging global human population, finding a cure for late onset neurodegenerative diseases has become an urgent enterprise. However, these efforts are hindered by the lack of understanding of what constitutes the phenotype of aged human microglia-the cell type that has been strongly implicated by genetic studies in the pathogenesis of age-related neurodegenerative disease. Here, we establish the set of genes that is preferentially expressed by microglia in the aged human brain. This HuMi_Aged gene set captures a unique phenotype, which we confirm at the protein level. Furthermore, we find this gene set to be enriched in susceptibility genes for Alzheimer's disease and multiple sclerosis, to be increased with advancing age, and to be reduced by the protective APOEε2 haplotype. APOEε4 has no effect. These findings confirm the existence of an aging-related microglial phenotype in the aged human brain and its involvement in the pathological processes associated with brain aging.


Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/genética , Microglía/metabolismo , Transcriptoma/genética , Anciano , Atlas como Asunto , Autopsia , Estudios de Cohortes , Perfilación de la Expresión Génica , Biblioteca de Genes , Humanos , Persona de Mediana Edad , Corteza Prefrontal/citología , Estudios Prospectivos , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA