Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Water Health ; 20(1): 92-102, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35100157

RESUMEN

Thermal therapeutic pools in most countries are operated in a manner similar to swimming pools: with water circulation, filtration and disinfection. However, in some countries, including Hungary, therapeutic pools are traditionally not treated this way, in order to preserve the therapeutic qualities of the water. However, dilution and frequent water replacement applied in these pools are often insufficient to ensure adequate microbial water quality, posing a risk of infection to the bathers. In the present case study, the impact of water treatment (including chemical disinfection by hypochlorite or hydrogen peroxide) was investigated on the therapeutic components of the water in seven Hungarian spas of various water composition. Microbial quality was improved by both disinfectants, but hypochlorite reduced the concentration of the therapeutic components sulfide, bromide, and iodide ions by 40-99%, and high levels of disinfection by-products were observed. Hydrogen peroxide only affected sulfide ion (91% reduction). Other technological steps (e.g., transport or cooling by dilution) were found to have significant impact on composition, often outweighing the effect of disinfection. The current case study demonstrated that thermal waters may be treated and disinfected with minimal loss of the therapeutic compounds, if an adequate treatment procedure is selected based on the water composition.


Asunto(s)
Desinfectantes , Piscinas , Baños , Desinfectantes/farmacología , Desinfección , Hungría
2.
Environ Res ; 197: 111098, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826942

RESUMEN

This study was carried out to determine the effect of arsenic on tomato and cabbage cultivated in sand, sandy silt, and silt soil, and irrigated with water containing arsenic at concentrations 0.05 and 0.2 mg/L. Increasing arsenic in irrigation water did not affect the photosynthetic machinery. The chlorophyll content index increased in case of all soils and was dependent on the soil nitrogen, phosphorous, and plant biomass. Arsenic concentrations of 0.05 and 0.2 mg/L did not display any phytotoxic symptoms other than reduction in biomass in some cases. In cabbage, arsenic treatment of 0.2 mg/L increased the overall plant biomass production, while in tomato there was a decrease in aerial part and fruit biomass. The biomass production of both plants treated with different concentrations of arsenic, in the three soils was in the following order: silt > sand > sandy silt. Increase of arsenic in the irrigation water resulted in increase in arsenic concentration in the root and aerial part of both plants, at the same cultivation parameters. But tomato fruits displayed a decrease in arsenic accumulation with higher arsenic treatment. In both plants, the arsenic concentration in the plant parts changed in the following order: root > aerial part > fruit. Cabbage accumulated approximately twenty-fold more arsenic in the edible part (0.10-0.25 mg/kg DW) as compared to tomato (0.006-0.011 mg/kg DW) and displayed a good correlation with soil extractable arsenic. When cabbage was cultivated in three different soils applying the same irrigation water, it accumulated arsenic in the following order: sand > sandy silt > silt (p < 0.001 at 0.05 mg/L and p < 0.01 at 0.2 mg/L arsenic treatment). In tomato, the difference in arsenic accumulation among different soil types was highly significant (p < 0.001) but the accumulation pattern varied with the arsenic treatment applied. Sandy soil with the lowest total soil arsenic (4.32 mg/kg) resulted in the highest arsenic concentration in both plants. Among all soils and plants, the transfer factors and bioaccumulation factors were higher in sandy soil, and in cabbage. The estimated daily intake and hazard quotient values for arsenic were lower than 1 in all cases, implying no non-cancerous health risks at the arsenic concentrations applied in our study. Among nutrients only P showed a slight decline with increasing arsenic concentration while all other elements (Mg, K, Ca, S, Si, Fe, Mn, Cu, Zn) did not display any significant changes.


Asunto(s)
Arsénico , Brassica , Contaminantes del Suelo , Solanum lycopersicum , Arsénico/análisis , Arsénico/toxicidad , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Agua
3.
Ecotoxicology ; 27(8): 1058-1068, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29961159

RESUMEN

Despite the increasing number and quantity of nanomaterials released in the environment, our knowledge on their bioavailability and possible toxicity to organisms is rather limited. Thus, we know quite little about sensitivity of various nematode feeding types and life strategies to treatments with nano metal oxides. The toxicity of zinc oxide nanoparticles (nano-ZnO) (with a particle size of 25 nm) and the bulk counterpart was investigated in two free-living nematode species of different life strategies: Xiphinema vuittenezi, a K-strategist plant-feeder nematode and Panagrellus redivivus, an r-strategist bacterivor nematode. The internal zinc concentration and the concentration of minor and trace elements were determined by total reflection X-ray fluorescence spectrometry. Concentration-dependent mortality in both nematode species was observed following a 24-h exposure both to nano-ZnO and bulk ZnO. The zinc concentration of the treating suspension had a significant effect on the internal zinc content of the animals in both cases. Particle size did not influence the internal zinc content. Our results show that nano and bulk ZnO have a similar dose-response effect on mortality of the bacterivor P. redivivus. In contrast, the nano-ZnO has stronger toxic effect on the mortality of X. vuittenezi. In general, X. vuittenezi did not react more sensitively to the treatments than P. redivivus, but appeared sensitive to the nano-ZnO treatment compared to bulk ZnO.


Asunto(s)
Nanopartículas del Metal/toxicidad , Nematodos/fisiología , Pruebas de Toxicidad , Óxido de Zinc/toxicidad , Animales , Tamaño de la Partícula
4.
Sci Rep ; 14(1): 12041, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802478

RESUMEN

Since the ingestion of both natural and anthropogenic microfibers produces a deleterious effect on aquatic organisms, it is crucial to explore the emission of these pollutants by WWTPs into the receiving water bodies, such as rivers. Cellulose- and petroleum-based microfibers, as well as microplastic particles, were collected from the effluent of a municipal WWTP operating with activated sludge technology in Budapest, Hungary. During two sampling campaigns organized in February and April of 2023 on different working days and at different times of the day, 123-145 L of effluent was sieved and filtered. The organic matter was removed by hydrogen-peroxide treatment. All fibers and particles larger than 10 µm were counted, and using a fluorescence microscope, the fibers were geometrically characterized in terms of length and diameter. Each fiber was individually identified by transflection-FT-IR method. The fiber concentration varied in the range of 1.88-2.84 and 4.25-6.79 items/L during the 7th and the 16th week of 2023, respectively. In February and April, the proportion of microfibers in the solid particles was 78.3 and 94.7%, respectively. In the effluent the cellulose-based microfibers were dominant (53-91%), while among the petroleum-based microfibers, polyester occurred most often. The median length of cellulose-based fibers was considerably higher in April than in February (650 vs. 1250 µm), and simultaneously the median diameter also increased from 21 to 29 µm. This behaviour was also seen, albeit to a lesser extent, in connection to microfibers derived from petroleum. The treated wastewater's daily microfiber transport to the Danube River varied between 0.44 - 0.69 and 0.94-1.53 billion in February and April 2023, respectively.


Asunto(s)
Aguas Residuales , Hungría , Aguas Residuales/química , Celulosa/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Purificación del Agua/métodos , Microplásticos/análisis , Eliminación de Residuos Líquidos/métodos , Petróleo/análisis , Aguas del Alcantarillado/análisis
5.
Sci Rep ; 13(1): 12543, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532748

RESUMEN

Due to increased manufacture and recycling of lithium batteries across the world, we may anticipate a rise in lithium pollution in the aquatic environment and drinking water reservoirs. In order to investigate the current status regarding the lithium content in Hungarian tap waters, samples were collected from the public drinking water supply systems of 19 county seats in Hungary during seasonally selected times. Depending on the water sources, such as bank-filtrated river water, surface water from open reservoirs, and groundwater, the lithium concentrations varied between 0.90-4.23, 2.12-11.7 and 1.11-31.4 µg/L, respectively, while the median values were 3.52, 5.02 and 8.55 µg/L, respectively. The lithium concentration in the bottled Hungarian mineral waters was also determined since the daily intake of lithium can be influenced by the consumption of mineral waters. The concentrations ranged from 4.2 to 209 µg/L, while the median value was only 17.8 µg/L. Additionally, a correlation was only found between lithium and potassium concentrations. The lithium concentration was also assessed at ten sampling locations in the Hungarian segment of the Danube River since the Danube water is also a water source for additional drinking water utilities using bank filtration technology. The mean and median lithium concentrations were 2.78 and 2.64 µg/L, respectively.


Asunto(s)
Agua Potable , Aguas Minerales , Contaminantes Químicos del Agua , Hungría , Litio , Ríos , Abastecimiento de Agua , Aguas Minerales/análisis , Minerales , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Pollut Res Int ; 30(56): 118724-118735, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37917265

RESUMEN

The pattern of arsenic (As) uptake at different developmental stages in plants and its consequent influence on the growth of plants was investigated in bean and lettuce. Further, the human health risk from the consumption of these As-laced vegetables was determined. The irrigation water was contaminated with As at concentrations of 0.1, 0.25, and 0.5 mg/L. The As concentration in the plant parts (root, stem, leaves, and flower/fruit) was determined in bean at the young, flowering, and fruiting stages and lettuce at the young and mature stages. At the different growth stages, As had an impact on the biomass of bean and lettuce plant parts, but none of the biomass changes were significant (p>0.05). The increase in As concentration of the irrigation water elevated the As concentration of plant parts of both plants at all growth stages, with the exception of the bean fruit. The As concentration in the developmental stages was in the order: lettuce (young>mature) and bean (fruiting>young>flowering). In lettuce, the transfer factor was higher at the young stage (0.09-0.19, in the control and 0.1 mg/L As treatment), while in bean, it was highest at the flowering stage (0.09-0.41, in all treatments). In the edible part, lettuce possessed substantially elevated As concentrations (0.30, 0.61, and 1.21 mg/kg DW) compared to bean (0.008, 0.005, and 0.022 mg/kg DW) at As treatments of 0.1, 0.25, and 0.5 mg/L, respectively, and posed significant health risks at all applied As concentrations.


Asunto(s)
Arsénico , Lactuca , Humanos , Verduras , Hojas de la Planta , Agua
7.
PLoS One ; 17(10): e0275589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36194606

RESUMEN

An important challenge for mankind today is to find a plant-based source of iodine, instead of table salt, which would provide the recommended daily dosage of iodine. The aim of this work was to study the accumulation of iodine and the physiochemical changes in bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.) irrigated with iodine-containing water. Applying iodine at concentration of 0.5 mg L-1 resulted 51, 18, and 35% decrement in biomass of bean fruit, while in pea fruit, a 13% reduction and a 3 and 2% increment were observed when the plants were cultivated in sand, sandy silt, and silt, respectively. The highest iodine concentrations in the bean and pea fruits were detected in plants cultivated in silt soil with concentration of 0.5 mg I- L-1 and amounted to 1.6 and 0.4 mg kg-1, respectively. In presence of iodine at concentration of 0.5 mg L-1, the concentration of magnesium, phosphorous, manganese and iron increased in the bean fruit, while in the case of pea, at iodine concentration above 0.1 mg L-1 the uptake of these nutrients were hampered. Based on these facts, the iodized bean can be recommended as a possible food source to enhance the iodine intake.


Asunto(s)
Yodo , Phaseolus , Biofortificación , Yoduros , Hierro , Magnesio , Manganeso , Pisum sativum , Arena , Cloruro de Sodio Dietético , Suelo , Agua
8.
Chemosphere ; 288(Pt 2): 132393, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34600926

RESUMEN

Sitagliptin (SITA) is an antidiabetic drug consumed worldwide in high quantities. Because of the low removal rate of this compound in conventional wastewater treatment plants (WWTPs), it enters receiving surface waters with the discharged WWTP effluents. SITA can be detected up to µg/L concentration in rivers. In this study, UV (254 nm) and (V)UV (185 nm + 254 nm) irradiation was applied in laboratory scale to degrade SITA. The effect of three parameters was evaluated on the degradation rate, namely i) the efficiency in UV and (V)UV irradiation, ii) the presence or absence of dissolved oxygen, iii) the matrix effect of WWTP effluent. Degradation rate of SITA was largely increased by (V)UV irradiation, and decreased in WWTP effluent as expected. The presence of dissolved oxygen increased the degradation rate only in UV experiments and did not have a considerable effect in (V)UV experiments. In total, 14 transformation products (TPs) were identified (twelve new); their structures were proposed based on high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy analyses. The most characteristic reaction steps of the degradation of SITA involved nucleophilic aromatic photosubstitution whereas hydroxide ions acted as attacking nucleophiles and replaced F atoms of the phenyl moiety by hydroxide groups, in agreement with the increase in photolysis rate with increasing pH. The photochemical degradation pathway of SITA was also interpreted. Kinetic profiles revealed TP 421, TP 208 and TP 192 to be the most recalcitrant TPs.


Asunto(s)
Fosfato de Sitagliptina , Agua , Cinética , Física
9.
Plants (Basel) ; 10(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34685895

RESUMEN

Additional Selenium (Se) intake may be recommended in areas of Se deficiency to prevent various human diseases. One possibility for this is biofortification. In this experiment, the effect of irrigation water containing 100 and 500 µg L-1 Se, in the form of Na2SeO4, on green bean, cabbage, potato and tomato was investigated in a greenhouse pot experiment with sand, silty sand and silt soils. The chlorophyll content index was usually improved by Se and was significantly higher in potato in sand and silty sand and in tomato in silty sand and silt soils. The Se content of edible plant parts increased 63-fold in the 100 µg L-1 Se treatment and almost 400-fold in the 500 µg L-1 Se treatment, averaged over the four species and the three soils. Irrigation water with a Se content of 100 µg L-1 may be suitable for the production of functional food in the case of green beans, potatoes and tomatoes. However, due to its greater Se accumulation, cabbage should only be irrigated with a lower Se concentration. The use of Se-enriched irrigation water might be a suitable method for Se biofortification without a significant reduction in plant biomass production and without a remarkable modification of other macro- and microelement contents.

10.
Front Plant Sci ; 12: 658892, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194449

RESUMEN

The most important environmental source of boron (B) contamination is irrigation water. The data on the effect of B on the elemental composition in the edible parts of vegetables are scarce. A greenhouse pot experiment investigated the effect of irrigation water containing 0.1 and 0.5 mg/L B on the biomass, elemental (e.g., B, Mg, K, Fe, Cu, and Zn) composition, and photosynthetic parameters of tomato (Solanum lycopersicum), green bean (Phaseolus vulgaris), potato (Solanum tuberosum), and cabbage (Brassica oleracea) plants grown on 10 kg of sand, silty sand, or silty soil. The biomass of the edible part was unaffected by B treatment. The soil type determined the effect of B irrigation on the elemental composition of vegetables. The B content increased by 19% in tomatoes grown on silty soil. The 0.1 mg/L B treatment facilitated tomato fruit ripening on all soils, and the 0.5 mg/L B treatment doubled its chlorophyll content index (CCI) on silty soil. The 0.5 mg/L B treatment negatively affected the nutritional value of green beans on all soils, decreasing the Fe and K contents by an average of 83 and 34%, respectively. The elemental composition of potato was unaffected by the treatments, but the CCI of potato leaves increased in the 0.5 mg/L B treatment by 26%. The B content was increased by 39% in cabbages grown on light-textured soils. In conclusion, B concentration of up to 0.5 mg/L in irrigation water had no significant beneficial or adverse effect on the investigated vegetables, but 0.1 mg/L B treatment could shorten tomato fruit maturation time on B-poor soils. The B levels in vegetables remained suitable for human consumption.

11.
Chemosphere ; 275: 130080, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33667764

RESUMEN

For the first time, high energy VUV photons and generation of O3 by (V)UV lamps were applied together for removal of active pharmaceutical ingredients (APIs) from biologically treated wastewater (BTWW) in pilot-scale. The core of the pilot container unit was a photoreactor assembly consisting of six photoreactors, each containing a low-pressure Hg lamp (UV dose of 1.2 J/cm2 and 6.6 J/cm2 at 185 nm and 254 nm, respectively). BTWW was irradiated (4.75 min residence time) by (V)UV light in presence of in situ photochemically generated O3 from coolant air of the lamps. Experiments were conducted at the site of two wastewater treatment plants. Out of seven target APIs (namely carbamazepine, ciprofloxacin, clarithromycin, diclofenac, metoprolol, sitagliptin, and sulfamethoxazole), 80-100% removal was accomplished for five and 40-80% for two compounds. Two degradation products of carbamazepine were detected. Degradation products of other target compounds were not found. The applied O3 dose was 30-45 µg O3/mg dissolved organic carbon. Inactivation of up to log-4.8, log-4.5 and log-3.8 could be achieved for total coliform, Escherichia coli and Enterococcus faecalis, respectively. SOS Chromotest indicated no genotoxicity nor acute toxicity. Generation of neither NH4+, NO2- nor NO3- was observed during post-treatment. Electric energy per order values were calculated for the first time for (V)UV/O3 treatment in BTWW with a median value of 1.5 kWh/m3. This technology can be proposed for post-treatment of BTWWs of small settlements or livestock farms to degrade micropollutants before water discharge or for production of irrigation water. Further studies are essential in pilot-scale for other applications.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Oxidación-Reducción , Tecnología , Rayos Ultravioleta , Aguas Residuales , Contaminantes Químicos del Agua/análisis
12.
Arch Environ Contam Toxicol ; 58(3): 587-93, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19826749

RESUMEN

Chlorpyrifos (CPF) is moderately persistent in soils. In our study, microcalorimetry was introduced for the first time to explore the acute toxic effect of CPF on a Pseudomonas strain in sterilized soil. Firstly, it was determined by microcalorimetry that P. putida failed to degrade CPF. Then the acute toxicity of increasing concentrations of CPF to P. putida was determined by its temporal effects on metabolism and counts of colony forming units. Results revealed that the increase of CPF concentration could induce a decrease of the growth rate constant (k) and the total thermal effect (Q (T)), representing an inhibiting action on P. putida. In addition, the colony forming units (CFU) for P. putida were counted. Results showed that the number of P. putida decreased with increasing CPF dose after 18 h of incubation in sterilized soil. Interestingly, the trend of the number of CFU was similar to the growth rate constant k, whereas the trend became irregular after 36 h of incubation. This indicated that P. putida resisted and also expresses high metabolic activity during the exponential growth phase of 18 h; thereafter the microorganisms showed a certain adaptation, even declining in number and activity.


Asunto(s)
Calorimetría/métodos , Cloropirifos/toxicidad , Insecticidas/toxicidad , Pseudomonas putida/efectos de los fármacos , Microbiología del Suelo , Recuento de Colonia Microbiana , Cinética , Pseudomonas putida/crecimiento & desarrollo
13.
Artículo en Inglés | MEDLINE | ID: mdl-20390914

RESUMEN

A multi-channel thermal activity microcalorimeter was used to determine the pyrene-induced toxic effect on two polycyclic aromatic hydrocarbon (PAH)-degrading bacteria Acinetobacter junii (A. junii) and Bacillus subtilis (B. subtilis). Power-time curves were analyzed and calorimetric parameters including growth rate constant (k), half inhibitory concentration (IC50) and total thermal effect (QT) were obtained. A. junii and B. subtilis were completely inhibited when the concentration of pyrene reached 400 and 160 microg mL(-1), respectively. The relationships between the calorimetric parameters and concentration of pyrene were studied. The growth rate of A. junii decreased with the increase in pyrene concentration at 50-200 microg mL(-1). The growth of biomass for A. junii at various concentrations of pyrene was determined. The count of A. junii after 8 day's incubation reached maximum irrespective of the initial pyrene concentrations ranging from 50 to 200 microg mL(-1) and the smallest stimulative action of pyrene was at 200 microg mL(-1). The variations of biomass during the growth of A. junii were consistent with the microcalorimetric data, indicating that microcalorimetry can be an effective technique to investigate the effect of pyrene on microorganisms.


Asunto(s)
Acinetobacter/efectos de los fármacos , Calorimetría/métodos , Compuestos Policíclicos/metabolismo , Pirenos/toxicidad , Acinetobacter/crecimiento & desarrollo , Acinetobacter/metabolismo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo
14.
Front Plant Sci ; 11: 593047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362822

RESUMEN

Accumulation of iodine by potato (Solanum tuberosum L.) and carrot (Daucus carota L. var. sativus) plants cultivated on different soils (sand, sandy silt, and silt) using irrigation water containing iodine at concentrations of 0.1 and 0.5 mg/L was investigated. In the edible organs of potato and carrot control plants grown on sand, sandy silt, and silt soils, the iodine concentrations were 0.15, 0.17, and 0.20 mg/kg (potato) and 0.012, 0.012, and 0.013 mg/kg (carrot); after the treatment by applying 0.5 mg/L iodine dosage, the iodine concentrations were 0.21, 0.19, 0.27 mg/kg (potato) and 3.5, 3.7, 3.0 mg/kg (carrot), respectively. Although the iodine treatment had no significant effect on the biomass production of these plants, in potato tubers, it resulted in higher Fe and lower Mg and P concentrations, whereas no similar trend was observable in carrot roots. The accumulation of Mn, Cu, Zn, and B in the edible part of both plants was not influenced by the iodine treatment. The soil properties did not have a significant impact on biomass production under the same environmental conditions. The concentration and the distribution of iodine in both plants were slightly modified by the growing medium; however, the photosynthetic efficiency and the chlorophyll content index of potato plants cultivated in silt soil increased significantly. Potato plant was not suitable for biofortification with iodine, while considering the iodine concentration and the moisture content of carrot roots, it can be calculated that consuming 100 g fresh carrot would cover about 38% of the daily iodine intake requirement for an average adult person.

15.
J Hazard Mater ; 383: 121181, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31541954

RESUMEN

Increasing amount of micropollutants such as drugs, cosmetics and nutritional supplements detected in surface waters represents increasing risk to humans and to the whole environment. These hazardous materials deriving mostly from wastewaters often cannot be effectively removed by conventional water treatment technologies due to their persistence. Some of the innovative technologies use specific sorbents for their removal. Cyclodextrin-based sorbents have already proved to be efficient in laboratory-scale experiments, but no pilot-plant scale demonstration has been performed so far. We are the first who applied this sorption-technology as a tertiary treatment in a pilot-plant scale operating, biomachine-type municipal wastewater treatment plant. As a result of the treatment 7 of 9 typical micropollutants (estradiol, ethinyl estradiol, estriol, diclofenac, ibuprofen, bisphenol A and cholesterol) were removed with >80% efficiency from effluent (reducing their concentration from ∼5 µg/L to <0.001-1 µg/L). GC-MS analysis of water samples showed that many of the micropollutants were removed from the water within a short time, demonstrating the high potential of the applied cyclodextrin-based sorbent in micropollutant removal. The effect-based testing also confirmed the efficiency. There was a correlation between sorption efficacies and binding constants of micropollutant/cyclodextrin inclusion complexes, showing that among others also inclusion complex formation of pollutants with cyclodextrin played important role in sorption mechanism.

16.
Ecotoxicol Environ Saf ; 72(1): 128-135, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18328562

RESUMEN

A microcalorimetric technique was applied to a series of experiments to follow the toxic effect caused by the trivalent iron on the single and mixed microbes in sterilized soil that was inoculated with the single Bacillus subtilis (B. subtilis) (prokaryotic bacterium), single Candida humicola (C. humicola) (eukaryotic fungus) and the mixed-species. The microbial activity was stimulated by the addition of 5.0mg glucose and 5.0mg ammonium sulfate under a 35% controlled humidity in the studied soil samples of 1.2g. The power-time curves from every experiment were analyzed, and from these analyses characteristic parameters, such as growth rate constant (k) and total thermal effect (Q) which can reflect the biochemical reactions were determined. The mixed-species have moderate tolerance to the iron overload, comparing with single species, and exhibit synergistic interaction in exponential growth phase (0-400.0 microg mL(-1)). Meanwhile, there is no much difference in the thermal effect (Q) per gram soil sample for the single and mixed culture. This also validates that the nutrient substances in natural environment determine the organisms' metabolic activities. Ultraviolet-visible spectrophotometry and dissolved oxygen sensor also were successfully applied to reflect the activities of B. subtilis and C. humicola in the pure culture. The investigation could provide insight into the microbial ecology of bacteria and fungi in ecological niches.


Asunto(s)
Compuestos Férricos/farmacología , Microbiología del Suelo , Suelo/análisis , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Calcio/análisis , Calorimetría/métodos , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Cloruros , Magnesio/análisis , Microquímica/métodos , Oxígeno/análisis , Fósforo/análisis , Potasio/análisis , Sodio/análisis , Espectrofotometría
17.
Water Sci Technol ; 60(4): 957-64, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19700834

RESUMEN

In our experimental work the pilot plant and full scale anaerobic bioreactors of a communal sewage treatment plant were tested by applying usual control parameters (pH, volatile acid content, alkalinity, gas composition), and enzyme activity (dehydrogenase, protease, lipase) measurements. Influence of temperature change was examined in pilot plant scale, while the effect of alteration in specific organic matter load both in pilot and full scale. Among the control parameters only the change of the volatile acid concentration reflected the occurred influences. During the temperature varying experimental phase the dehydrogenase enzyme activity excellently indicated the influence of the different conditions. The effect of altering substrate load onto the gas production was also well followed by the enzyme activity data (mainly protease, lipase), and more rapidly than by measuring volatile acid concentration. In practice it is expedient to use enzyme activity measurements in those cases, when changes in the substrate composition and load are frequent. Another advantage of these tests is that they can be carried out quickly and at a relative low cost.


Asunto(s)
Reactores Biológicos , Enzimas/metabolismo , Anaerobiosis , Biodegradación Ambiental , Gases , Lipasa/metabolismo , Compuestos Orgánicos/análisis , Oxidorreductasas/metabolismo , Péptido Hidrolasas/metabolismo , Proyectos Piloto , Temperatura , Volatilización
18.
J Environ Sci Health B ; 44(2): 157-63, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19130374

RESUMEN

A series of calorimetric experiments were performed to investigate the toxic effects of beta-cypermethrin (BCP), bensulfuron-methyl (BSM) and prometryne (PM) on Pseudomonas putida (P. putida). The metabolic action of P. putida on the three pesticides was studied by obtaining power-time curves. The growth of P. putida was inhibited completely in each case when the concentrations of pesticides were up to 80 micro g mL(- 1). The relationships between the inhibitory ratio (k) and doses of contaminants were approximately linear for the three pesticides. The total heat dissipated per milliliter (Q(total)) for the pesticides decreased during the course of the experiment. The OD(600) of P. putida growth in the absence and presence of pesticides was also obtained. The power-time curves of P. putida growth coincided with its turbidity curves. This elucidates that microcalorimetric method agrees well with the routine microbiological method. Among these three pesticides, BSM was found to be the most toxic with an IC(50) of 19.24 micro g mL(- 1) against P. putida. PM exhibited moderate virulence with an IC(50) of 27.86 micro g mL(- 1) and BCP had the lowest toxicity with an IC(50) of 39.64 micro g mL(- 1).


Asunto(s)
Plaguicidas/toxicidad , Pseudomonas putida/efectos de los fármacos , Calorimetría , Prometrina/toxicidad , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/metabolismo , Piretrinas/toxicidad , Compuestos de Sulfonilurea/toxicidad , Factores de Tiempo , Pruebas de Toxicidad Aguda
19.
J Hazard Mater ; 159(2-3): 465-70, 2008 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-18407411

RESUMEN

In this study, the technique of microcalorimetry based on heat-output by aerobic bacterial respiration was explored to evaluate the toxic effect of cadmium on Candida humicola, Bacillus subtilis, singularly or in a mixture of both. Power-time curves of the growth metabolism of C. humicola and B. subtilis and the effect of Cd(2+) were studied using the TAM III (the third generation thermal activity monitor) multi-channel microcalorimetric system, isothermal mode, at 28 degrees C. The differences in shape of the power-time curves and the thermodynamic and kinetic characteristics of microorganisms growth were compared. The effect of cadmium added into microorganism would significantly reduce the life cycle and change the thermal effect of microbial metabolic process with different concentrations of Cd(2+). The experimental results revealed that at the same concentration, the sequence of inhibitory ratio (I) and maximum thermal power (P(max)) of the Cd(2+) was: mixed microorganisms>C. humicola>B. subtilis. The sequence of total thermal effect (Q(total)) and growth rate constant (k) is mixed microorganisms>B. subtilis>C. humicola. These results are important to further studies of the physiology and pharmacology of C. humicola and B. subtilis and may support the theory of restoring contaminated soil.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Compuestos de Cadmio/toxicidad , Candida/efectos de los fármacos , Calorimetría , Medios de Cultivo , Microbiología del Suelo , Termodinámica
20.
Environ Toxicol Pharmacol ; 25(3): 351-7, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-21783873

RESUMEN

A series of calorimetric experiments were performed to investigate toxic action of ammonium ferric sulfate (AFS) on Bacillus subtilis, Pseudomonas putida and Candida humicola. The power-time curves of micro-organism metabolism were obtained, and the action of them by addition of AFS was studied. C. humicola, B. subtilis and P. putida were inhibited completely when the concentrations were up to 320.0, 160.0 and 160.0µgmL(-1), respectively. The relationships between growth rate constant (k) and doses of AFS were approximately linear for three microbes, P. putida for 10.0-160.0µgmL(-1) (R=-0.9746), B. subtilis for 0-160.0µgmL(-1) (R=-0.9868) and C. humicola for 10.0-320.0µgmL(-1) (R=-0.9955). The total heat dissipated per milliliter (Q(T)) for three microbes remained balance approximately during the lower doses, P. putida and B. subtilis less than the dose of 20.0µgmL(-1), 0.56±0.01 and 0.26±0.01JmL(-1), respectively, C. humicola less than the dose of 40.0µgmL(-1), 0.58±0.03JmL(-1). The biomass and OD(600) of three micro-organisms growth in the absence of AFS also were obtained. The power-time curve of C. humicola growth coincided with its turbidity curve. It elucidates that microcalorimetric method agreed with the routine microbiology method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA