Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Heredity (Edinb) ; 131(3): 221-229, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37443389

RESUMEN

Maternally transmitted symbionts such as Wolbachia can alter sex allocation in haplodiploid arthropods. By biasing population sex ratios towards females, these changes in sex allocation may facilitate the spread of symbionts. In contrast to symbiont-induced cytoplasmic incompatibility (CI), the mechanisms that underpin sex allocation distortion remain poorly understood. Using a nuclear genotype reference panel of the haplodiploid mite Tetranychus urticae and a single Wolbachia variant that is able to simultaneously induce sex allocation distortion and CI, we unraveled the mechanistic basis of Wolbachia-mediated sex allocation distortion. Host genotype was an important determinant for the strength of sex allocation distortion. We further show that sex allocation distortion by Wolbachia in haplodiploid mites is driven by increasing egg size, hereby promoting egg fertilization. This change in reproductive physiology was also coupled to increased male and female adult size. Our results echo previous work on Cardinium symbionts, suggesting that sex allocation distortion by regulating host investment in egg size is a common strategy among symbionts that infect haplodiploids. To better understand the relevance that sex allocation distortion may have for the spread of Wolbachia in natural haplodiploid populations, we parametrized a model based on generated phenotypic data. Our simulations show that empirically derived levels of sex allocation distortion can be sufficient to remove invasion thresholds, allowing CI to drive the spread of Wolbachia independently of the initial infection frequency. Our findings help elucidate the mechanisms that underlie the widespread occurrence of symbionts in haplodiploid arthropods and the evolution of sex allocation.


Asunto(s)
Tetranychidae , Wolbachia , Animales , Masculino , Femenino , Reproducción/fisiología , Penetrancia , Tetranychidae/genética , Bacteroidetes , Citoplasma , Wolbachia/genética , Simbiosis/genética , Razón de Masculinidad
2.
Heredity (Edinb) ; 124(4): 603-617, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32047292

RESUMEN

Although the diversity of bacterial endosymbionts in arthropods is well documented, whether and how such diversity is maintained remains an open question. We investigated the temporal changes occurring in the prevalence and composition of endosymbionts after transferring natural populations of Tetranychus spider mites from the field to the laboratory. These populations, belonging to three different Tetranychus species (T. urticae, T. ludeni and T. evansi) carried variable infection frequencies of Wolbachia, Cardinium, and Rickettsia. We report a rapid change of the infection status of these populations after only 6 months of laboratory rearing, with an apparent loss of Rickettsia and Cardinium, while Wolbachia apparently either reached fixation or was lost. We show that Wolbachia had variable effects on host longevity and fecundity, and induced variable levels of cytoplasmic incompatibility (CI) in each fully infected population, despite no sequence divergence in the markers used and full CI rescue between all populations. This suggests that such effects are largely dependent upon the host genotype. Subsequently, we used these data to parameterize a theoretical model for the invasion of CI-inducing symbionts in haplodiploids, which shows that symbiont effects are sufficient to explain their dynamics in the laboratory. This further suggests that symbiont diversity and prevalence in the field are likely maintained by environmental heterogeneity, which is reduced in the laboratory. Overall, this study highlights the lability of endosymbiont infections and draws attention to the limitations of laboratory studies to understand host-symbiont interactions in natural populations.


Asunto(s)
Bacteroidetes , Rickettsia , Simbiosis , Tetranychidae , Wolbachia , Animales , Bacteroidetes/genética , Femenino , Laboratorios , Rickettsia/genética , Tetranychidae/microbiología , Wolbachia/genética
3.
Oecologia ; 189(1): 111-122, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30511092

RESUMEN

To fight infection, arthropods rely on the deployment of an innate immune response but also upon physical/chemical barriers and avoidance behaviours. However, most studies focus on immunity, with other defensive mechanisms being relatively overlooked. We have previously shown that the spider mite Tetranychus urticae does not mount an induced immune response towards systemic bacterial infections, entailing very high mortality rates. Therefore, we hypothesized that other defence mechanisms may be operating to minimize infection risk. Here, we test (a) if spider mites are also highly susceptible to other infection routes-spraying and feeding-and (b) if they display avoidance behaviours towards infected food. Individuals sprayed with or fed on Escherichia coli or Pseudomonas putida survived less than the control, pointing to a deficient capacity of the gut epithelium, and possibly of the cuticle, to contain bacteria. Additionally, we found that spider mites prefer uninfected food to food contaminated with bacteria, a choice that probably does not rely on olfactory cues. Our results suggest that spider mites may rely mostly on avoidance behaviours to minimize bacterial infection and highlight the multi-layered nature of immune strategies present in arthropods.


Asunto(s)
Artrópodos , Infecciones Bacterianas , Ácaros , Tetranychidae , Animales , Olfato
4.
Exp Appl Acarol ; 74(2): 123-138, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29435771

RESUMEN

Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Reacción en Cadena de la Polimerasa Multiplex/métodos , Simbiosis , Tetranychidae/clasificación , Animales , Fenómenos Fisiológicos Bacterianos , Femenino , Masculino , Reacción en Cadena de la Polimerasa Multiplex/economía , Portugal , España , Tetranychidae/genética , Tetranychidae/microbiología
5.
Proc Biol Sci ; 284(1856)2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28592670

RESUMEN

The genome of the spider mite Tetranychus urticae, a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae, infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei, a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response.


Asunto(s)
Bacterias/patogenicidad , Tetranychidae/inmunología , Tetranychidae/microbiología , Animales , Herbivoria , Transcriptoma
6.
Evolution ; 76(3): 623-635, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35092614

RESUMEN

Arthropods are often infected with Wolbachia inducing cytoplasmic incompatibility (CI), whereby crosses between uninfected females and infected males yield unviable fertilized offspring. Although uninfected females benefit from avoiding mating with Wolbachia-infected males, this behavior is not always present in host populations and its evolution may hinge upon various factors. Here, we used spider mites to test whether CI could select for mate preference in uninfected females in absence of kin recognition. We found that uninfected females from several field-derived populations showed no preference for infected or uninfected males, nor evolved a preference after being exposed to CI for 12-15 generations by maintaining uninfected females with both infected and uninfected males (i.e., stable "infection polymorphism"). This suggests that Wolbachia-mediated mate choice evolution may require very specific conditions in spider mites. However, after experimental evolution, the copulation duration of Wolbachia-infected control males was significantly higher than that of uninfected control males, but not than that of uninfected males from the "infection polymorphism" regime. This result illustrates how gene flow may oppose Wolbachia-driven divergence between infected and uninfected hosts in natural populations.


Asunto(s)
Artrópodos , Tetranychidae , Wolbachia , Animales , Citoplasma , Femenino , Masculino , Reproducción , Tetranychidae/genética , Wolbachia/genética
7.
Evolution ; 75(8): 2085-2101, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34156702

RESUMEN

Wolbachia are maternally-inherited bacteria that induce cytoplasmic incompatibility in many arthropod species. However, the ubiquity of this isolation mechanism for host speciation processes remains elusive, as only few studies have examined Wolbachia-induced incompatibilities when host populations are not genetically compatible. Here, we used three populations of two genetically differentiated colour forms of the haplodiploid spider mite Tetranychus urticae to dissect the interaction between Wolbachia-induced and host-associated incompatibilities, and their relative contribution to postmating isolation. We found that these two sources of incompatibility act through different mechanisms in an additive fashion. Host-associated incompatibility contributes 1.5 times more than Wolbachia-induced incompatibility in reducing hybrid production, the former through an overproduction of haploid sons at the expense of diploid daughters (ca. 75% decrease) and the latter by increasing the embryonic mortality of daughters (by ca. 49%). Furthermore, regardless of cross direction, we observed near-complete F1 hybrid sterility and complete F2 hybrid breakdown between populations of the two forms, but Wolbachia did not contribute to this outcome. We thus show mechanistic independence and an additive nature of host-intrinsic and Wolbachia-induced sources of isolation. Wolbachia may contribute to reproductive isolation in this system, thereby potentially affecting host differentiation and distribution in the field.


Asunto(s)
Ácaros , Tetranychidae , Wolbachia , Animales , Diploidia , Reproducción , Aislamiento Reproductivo , Simbiosis , Tetranychidae/genética
8.
Ecol Evol ; 10(7): 3209-3221, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32273982

RESUMEN

Spider mites are severe pests of several annual and perennial crops worldwide, often causing important economic damages. As rapid evolution of pesticide resistance in this group hampers the efficiency of chemical control, alternative control strategies, such as the use of entomopathogenic fungi, are being developed. However, while several studies have focused on the evaluation of the control potential of different fungal species and/or isolates as well as their compatibility with other control methods (e.g., predators or chemical pesticides), knowledge on the extent of inter- and intraspecific variation in spider mite susceptibility to fungal infection is as yet incipient. Here, we measured the mortality induced by two generalist fungi, Beauveria bassiana and Metarhizium brunneum, in 12 spider mite populations belonging to different Tetranychus species: T. evansi, T. ludeni, and T. urticae (green and red form), within a full factorial experiment. We found that spider mite species differed in their susceptibility to infection by both fungal species. Moreover, we also found important intraspecific variation for this trait. These results draw caution on the development of single strains as biocontrol agents. Indeed, the high level of intraspecific variation suggests that (a) the one-size-fits-all strategy may fail to control spider mite populations and (b) hosts resistance to infection may evolve at a rapid pace. Finally, we propose future directions to better understand this system and improve the long-term success of spider mite control strategies based on entomopathogenic fungi.

9.
Ecol Evol ; 10(9): 3868-3880, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489617

RESUMEN

Many studies have revealed the ability of the endosymbiotic bacterium Wolbachia to protect its arthropod hosts against diverse pathogens. However, as Wolbachia may also increase the susceptibility of its host to infection, predicting the outcome of a particular Wolbachia-host-pathogen interaction remains elusive. Yet, understanding such interactions and their eco-evolutionary consequences is crucial for disease and pest control strategies. Moreover, how natural Wolbachia infections affect artificially introduced pathogens for biocontrol has never been studied. Tetranychus urticae spider mites are herbivorous crop pests, causing severe damage on numerous economically important crops. Due to the rapid evolution of pesticide resistance, biological control strategies using entomopathogenic fungi are being developed. However, although spider mites are infected with various Wolbachia strains worldwide, whether this endosymbiont protects them from fungi is as yet unknown. Here, we compared the survival of two populations, treated with antibiotics or naturally harboring different Wolbachia strains, after exposure to the fungal biocontrol agents Metarhizium brunneum and Beauveria bassiana. To control for potential effects of the bacterial community of spider mites, we also compared the susceptibility of two populations naturally uninfected by Wolbachia, treated with antibiotics or not. In one population, Wolbachia-infected mites had a better survival than uninfected ones in absence of fungi but not in their presence, whereas in the other population Wolbachia increased the mortality induced by B. bassiana. In one naturally Wolbachia-uninfected population, the antibiotic treatment increased the susceptibility of spider mites to M. brunneum, but it had no effect in the other treatments. These results suggest that natural Wolbachia infections may not hamper and may even improve the success of biological control using entomopathogenic fungi. However, they also draw caution on the generalization of such effects, given the complexity of within-host-pathogens interaction and the potential eco-evolutionary consequences of the use of biocontrol agents for Wolbachia-host associations.

10.
Ecol Evol ; 10(14): 7291-7305, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760529

RESUMEN

Laboratory studies are often criticized for not being representative of processes occurring in natural populations. One reason for this is the fact that laboratory populations generally do not capture enough of the genetic variation of natural populations. This can be mitigated by mixing the genetic background of several field populations when creating laboratory populations. From these outbred populations, it is possible to generate inbred lines, thereby freezing and partitioning part of their variability, allowing each genotype to be characterized independently. Many studies addressing adaptation of organisms to their environment, such as those involving quantitative genetics or experimental evolution, rely on inbred or outbred populations, but the methodology underlying the generation of such biological resources is usually not explicitly documented. Here, we developed different procedures to circumvent common pitfalls of laboratory studies, and illustrate their application using two haplodiploid species, the spider mites Tetranychus urticae and Tetranychus evansi. First, we present a method that increases the chance of capturing high amounts of variability when creating outbred populations, by performing controlled crosses between individuals from different field-collected populations. Second, we depict the creation of inbred lines derived from such outbred populations, by performing several generations of sib-mating. Third, we outline an experimental evolution protocol that allows the maintenance of a constant population size at the beginning of each generation, thereby preventing bottlenecks and diminishing extinction risks. Finally, we discuss the advantages of these procedures and emphasize that sharing such biological resources and combining them with available genetic tools will allow consistent and comparable studies that greatly contribute to our understanding of ecological and evolutionary processes.

11.
Curr Opin Insect Sci ; 36: 82-89, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31539789

RESUMEN

The herbivorous spider mite Tetranychus urticae is a generalist world crop pest. Early evidence for host races, its fully sequenced genome resolved to the chromosome level, and the development of other molecular tools in this species suggest that this arthropod can be a good model to address host plant adaptation and early stages of speciation. Here, we evaluate this possibility by reviewing recent studies of host-plant adaptation in T. urticae. We find that evidence for costs of adaptation are relatively scarce and that studies involving molecular-genetics and genomics are mostly disconnected from those with phenotypic tests. Still, with the ongoing development of genetic and genomic tools for this species, T. urticae is becoming an attractive model to understand the molecular basis of host-plant adaptation.


Asunto(s)
Adaptación Fisiológica , Tetranychidae/fisiología , Animales , Evolución Biológica , Herbivoria , Plantas , Tetranychidae/genética
12.
Nat Commun ; 9(1): 4869, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451829

RESUMEN

Facilitation occurs when one species positively impacts the fitness of another, and has predominantly been studied in free-living species like plants. Facilitation can also occur among symbiont (mutualistic or parasitic) species or strains, but equivalent studies are scarce. To advance an integrated view of the effect of facilitation on symbiont ecology and evolution, we review empirical evidence and their underlying mechanisms, explore the factors favouring its emergence, and discuss its consequences for virulence and transmission. We argue that the facilitation concept can improve understanding of the evolutionary forces shaping symbiont communities and their effects on hosts.


Asunto(s)
Evolución Biológica , Simbiosis/fisiología , Animales , Bacterias/crecimiento & desarrollo , Ecosistema , Hongos/fisiología , Humanos , Parásitos/fisiología , Plantas/microbiología , Plantas/parasitología , Plantas/virología , Virus/crecimiento & desarrollo
13.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219893

RESUMEN

In the last few decades, many studies have revealed the potential role of arthropod bacterial endosymbionts in shaping the host range of generalist herbivores and their performance on different host plants, which, in turn, might affect endosymbiont distribution in herbivore populations. We tested this by measuring the prevalence of endosymbionts in natural populations of the generalist spider mite Tetranychus urticae on different host plants. Focusing on Wolbachia, we then analysed how symbionts affected mite life-history traits on the same host plants in the laboratory. Overall, the prevalences of Cardinium and Rickettsia were low, whereas that of Wolbachia was high, with the highest values on bean and eggplant and the lowest on morning glory, tomato and zuchini. Although most mite life-history traits were affected by the plant species only, Wolbachia infection was detrimental for the egg-hatching rate on morning glory and zucchini, and led to a more female-biased sex ratio on morning glory and eggplant. These results suggest that endosymbionts may affect the host range of polyphagous herbivores, both by aiding and hampering their performance, depending on the host plant and on the life-history trait that affects performance the most. Conversely, endosymbiont spread may be facilitated or hindered by the plants on which infected herbivores occur.


Asunto(s)
Ipomoea nil/microbiología , Ipomoea nil/parasitología , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Solanum melongena/microbiología , Solanum melongena/parasitología , Tetranychidae/microbiología , Wolbachia/metabolismo , Animales , Bacteroidetes/metabolismo , Fabaceae/microbiología , Fabaceae/parasitología , Femenino , Especificidad del Huésped , Rickettsia/metabolismo , Simbiosis/fisiología , Tetranychidae/metabolismo
14.
FEMS Microbiol Ecol ; 94(4)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390142

RESUMEN

Bacterial endosymbionts are known as important players of the evolutionary ecology of their hosts. However, their distribution, prevalence and diversity are still largely unexplored. To this aim, we investigated infections by the most common bacterial reproductive manipulators in herbivorous spider mites of South-Western Europe. Across 16 populations belonging to three Tetranychus species, Wolbachia was the most prevalent (ca. 61%), followed by Cardinium (12%-15%), while only few individuals were infected by Rickettsia (0.9%-3%), and none carried Arsenophonus or Spiroplasma. These endosymbionts are here reported for the first time in Tetranychus evansi and Tetranychus ludeni, and showed variable infection frequencies between and within species, with several cases of coinfections. Moreover, Cardinium was more prevalent in Wolbachia-infected individuals, which suggests facilitation between these symbionts. Finally, sequence comparisons revealed no variation of the Wolbachia wsp and Rickettsia gtlA genes, but some diversity of the Cardinium 16S rRNA, both between and within populations of the three mite species. Some of the Cardinium sequences identified belonged to distantly-related clades, and the lack of association between these sequences and spider mite mitotypes suggests repeated host switching of Cardinium. Overall, our results reveal a complex community of symbionts in this system, opening the path for future studies.


Asunto(s)
Bacteroidetes/aislamiento & purificación , Rickettsia/aislamiento & purificación , Tetranychidae/microbiología , Wolbachia/aislamiento & purificación , Animales , Bacteroidetes/clasificación , Bacteroidetes/genética , Evolución Biológica , Europa (Continente) , Herbivoria , Microbiota/genética , Filogenia , Prevalencia , ARN Ribosómico 16S/genética , Rickettsia/clasificación , Rickettsia/genética , Simbiosis , Wolbachia/clasificación , Wolbachia/genética
15.
Philos Trans R Soc Lond B Biol Sci ; 370(1675)2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26150666

RESUMEN

Avian malaria has historically played an important role as a model in the study of human malaria, being a stimulus for the development of medical parasitology. Avian malaria has recently come back to the research scene as a unique animal model to understand the ecology and evolution of the disease, both in the field and in the laboratory. Avian malaria is highly prevalent in birds and mosquitoes around the world and is amenable to laboratory experimentation at each stage of the parasite's life cycle. Here, we take stock of 5 years of experimental laboratory research carried out using Plasmodium relictum SGS1, the most prevalent avian malaria lineage in Europe, and its natural vector, the mosquito Culex pipiens. For this purpose, we compile and analyse data obtained in our laboratory in 14 different experiments. We provide statistical relationships between different infection-related parameters, including parasitaemia, gametocytaemia, host morbidity (anaemia) and transmission rates to mosquitoes. This analysis provides a wide-ranging picture of the within-host and between-host parameters that may bear on malaria transmission and epidemiology.


Asunto(s)
Malaria Aviar/parasitología , Plasmodium/genética , Plasmodium/patogenicidad , Animales , Aves , Culex/parasitología , Modelos Animales de Enfermedad , Evolución Molecular , Interacciones Huésped-Parásitos , Humanos , Insectos Vectores/parasitología , Malaria Aviar/transmisión , Parasitemia/parasitología , Virulencia
16.
Parasit Vectors ; 7: 437, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25228147

RESUMEN

BACKGROUND: Identifying the parasites transmitted by a particular vector and the factors that render this vector susceptible to the parasite are key steps to understanding disease transmission. Although avian malaria has become a model system for the investigation of the ecological and evolutionary dynamics of Plasmodium parasites, little is still known about the field prevalence, diversity and distribution of avian Plasmodium species within the vectors, or about the extrinsic factors affecting Plasmodium population dynamics in the wild. METHODS: We examined changes in avian malaria prevalence and Plasmodium lineage composition in female Culex pipiens caught throughout one field season in 2006, across four sampling sites in southern France. Using site occupancy models, we correct the naive estimates of Plasmodium prevalence to account for PCR-based imperfect detection. To establish the importance of different factors that may bear on the prevalence and diversity of avian Plasmodium in field mosquitoes, we focus on Wolbachia and filarial parasite co-infections, as well as on the insecticide resistance status of the mosquito. RESULTS: Plasmodium prevalence in Cx. pipiens increased from February (0%) to October (15.8%) and did not vary significantly among the four sampling sites. The application of site occupancy models leads to a 4% increase in this initial (naive) estimate of prevalence. The parasite community was composed of 15 different haemosporidian lineages, 13 of which belonged to the Plasmodium genus, and 2 to the Haemoproteus genus. Neither the presence of different Wolbachia types and of filarial parasites co-infecting the mosquitoes, nor their insecticide resistance status were found to affect the Plasmodium prevalence and diversity. CONCLUSION: We found that haemosporidian parasites are common and diverse in wild-caught Cx. pipiens mosquitoes in Southern France. The prevalence of the infection in mosquitoes is unaffected by Wolbachia and filarial co-infections as well as the insecticide resistant status of the vector. These factors may thus have a negligible impact on the transmission of avian malaria. In contrast, the steady increase in prevalence from February to October indicates that the dynamics of avian malaria is driven by seasonality and supports that infected birds are the reservoir of a diverse community of lineages in southern France.


Asunto(s)
Culex/parasitología , Insectos Vectores/parasitología , Resistencia a los Insecticidas , Malaria Aviar/epidemiología , Plasmodium/fisiología , Animales , Aves , Coinfección/veterinaria , Reservorios de Enfermedades , Femenino , Francia/epidemiología , Haemosporida/fisiología , Malaria Aviar/parasitología , Malaria Aviar/transmisión , Modelos Teóricos , Nematodos/fisiología , Filogenia , Prevalencia , Estaciones del Año , Wolbachia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA