Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Cell Proteomics ; 23(5): 100760, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579929

RESUMEN

We describe deep analysis of the human proteome in less than 1 h. We achieve this expedited proteome characterization by leveraging state-of-the-art sample preparation, chromatographic separations, and data analysis tools, and by using the new Orbitrap Astral mass spectrometer equipped with a quadrupole mass filter, a high-field Orbitrap mass analyzer, and an asymmetric track lossless (Astral) mass analyzer. The system offers high tandem mass spectrometry acquisition speed of 200 Hz and detects hundreds of peptide sequences per second within data-independent acquisition or data-dependent acquisition modes of operation. The fast-switching capabilities of the new quadrupole complement the sensitivity and fast ion scanning of the Astral analyzer to enable narrow-bin data-independent analysis methods. Over a 30-min active chromatographic method consuming a total analysis time of 56 min, the Q-Orbitrap-Astral hybrid MS collects an average of 4319 MS1 scans and 438,062 tandem mass spectrometry scans per run, producing 235,916 peptide sequences (1% false discovery rate). On average, each 30-min analysis achieved detection of 10,411 protein groups (1% false discovery rate). We conclude, with these results and alongside other recent reports, that the 1-h human proteome is within reach.


Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas en Tándem , Humanos , Proteoma/análisis , Proteómica/métodos , Factores de Tiempo
2.
Mol Cell Proteomics ; 21(4): 100219, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35219906

RESUMEN

In the young field of single-cell proteomics (scMS), there is a great need for improved global proteome characterization, both in terms of proteins quantified per cell and quantitative performance thereof. The recently introduced real-time search (RTS) on the Orbitrap Eclipse Tribrid mass spectrometer in combination with SPS-MS3 acquisition has been shown to be beneficial for the measurement of samples that are multiplexed using isobaric tags. Multiplexed scMS requires high ion injection times and high-resolution spectra to quantify the single-cell signal; however, the carrier channel facilitates peptide identification and thus offers the opportunity for fast on-the-fly precursor filtering before committing to the time-intensive quantification scan. Here, we compared classical MS2 acquisition against RTS-SPS-MS3, both using the Orbitrap Eclipse Tribrid MS with the FAIMS Pro ion mobility interface and present a new acquisition strategy termed RETICLE (RTS enhanced quant of single cell spectra) that makes use of fast real-time searched linear ion trap scans to preselect MS1 peptide precursors for quantitative MS2 Orbitrap acquisition. We show that classical MS2 acquisition is outperformed by both RTS-SPS-MS3 through increased quantitative accuracy at similar proteome coverage, and RETICLE through higher proteome coverage, with the latter enabling the quantification of over 1000 proteins per cell at an MS2 injection time of 750 ms using a 2 h gradient.


Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas , Péptidos
3.
J Proteome Res ; 22(9): 2836-2846, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37557900

RESUMEN

Sample multiplexed quantitative proteomics assays have proved to be a highly versatile means to assay molecular phenotypes. Yet, stochastic precursor selection and precursor coisolation can dramatically reduce the efficiency of data acquisition and quantitative accuracy. To address this, intelligent data acquisition (IDA) strategies have recently been developed to improve instrument efficiency and quantitative accuracy for both discovery and targeted methods. Toward this end, we sought to develop and implement a new real-time spectral library searching (RTLS) workflow that could enable intelligent scan triggering and peak selection within milliseconds of scan acquisition. To ensure ease of use and general applicability, we built an application to read in diverse spectral libraries and file types from both empirical and predicted spectral libraries. We demonstrate that RTLS methods enable improved quantitation of multiplexed samples, particularly with consideration for quantitation from chimeric fragment spectra. We used RTLS to profile proteome responses to small molecule perturbations and were able to quantify up to 15% more significantly regulated proteins in half the gradient time compared to traditional methods. Taken together, the development of RTLS expands the IDA toolbox to improve instrument efficiency and quantitative accuracy for sample multiplexed analyses.


Asunto(s)
Péptidos , Proteómica , Proteómica/métodos , Péptidos/análisis , Proteoma/análisis , Biblioteca de Genes , Flujo de Trabajo , Biblioteca de Péptidos
4.
J Proteome Res ; 22(10): 3290-3300, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37683181

RESUMEN

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.


Asunto(s)
Péptidos , Proteómica , Proteómica/métodos , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteínas Sanguíneas
5.
Anal Chem ; 95(28): 10655-10663, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37389810

RESUMEN

Mass spectrometry (MS)-based proteomics is a powerful technology to globally profile protein abundances, activities, interactions, and modifications. The extreme complexity of proteomics samples, which often contain hundreds of thousands of analytes, necessitates continuous development of MS techniques and instrumentation to improve speed, sensitivity, precision, and accuracy, among other analytical characteristics. Here, we systematically evaluated the Orbitrap Ascend Tribrid mass spectrometer in the context of shotgun proteomics, and we compared its performance to that of the previous generation of Tribrid instruments─the Orbitrap Eclipse. The updated architecture of the Orbitrap Ascend includes a second ion-routing multipole (IRM) in front of the redesigned C-trap/Orbitrap and a new ion funnel that allows gentler ion introduction, among other changes. These modifications in Ascend hardware configuration enabled an increase in parallelizable ion injection time during higher-energy collisional dissociation (HCD) Orbitrap tandem MS (FTMS2) analysis of ∼5 ms. This enhancement was particularly valuable in the analyses of limited sample amounts, where improvements in sensitivity resulted in up to 140% increase in the number of identified tryptic peptides. Further, analysis of phosphorylated peptides enriched from the K562 human cell line yielded up to ∼50% increase in the number of unique phosphopeptides and localized phosphosites. Strikingly, we also observed a ∼2-fold boost in the number of detected N-glycopeptides, likely owing to the improvements in ion transmission and sensitivity. In addition, we performed the multiplexed quantitative proteomics analyses of TMT11-plex labeled HEK293T tryptic peptides and observed 9-14% increase in the number of quantified peptides. In conclusion, the Orbitrap Ascend consistently outperformed its predecessor the Orbitrap Eclipse in various bottom-up proteomic analyses, and we anticipate that it will generate reproducible and in-depth datasets for numerous proteomic applications.


Asunto(s)
Proteínas , Proteómica , Humanos , Proteómica/métodos , Células HEK293 , Proteínas/química , Espectrometría de Masas en Tándem/métodos , Fosfopéptidos
6.
Anal Chem ; 95(23): 9090-9096, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37252723

RESUMEN

The high-throughput quantification of intact proteoforms using a label-free approach is typically performed on proteins in the 0-30 kDa mass range extracted from whole cell or tissue lysates. Unfortunately, even when high-resolution separation of proteoforms is achieved by either high-performance liquid chromatography or capillary electrophoresis, the number of proteoforms that can be identified and quantified is inevitably limited by the inherent sample complexity. Here, we benchmark label-free quantification of proteoforms of Escherichia coli by applying gas-phase fractionation (GPF) via field asymmetric ion mobility spectrometry (FAIMS). Recent advances in Orbitrap instrumentation have enabled the acquisition of high-quality intact and fragmentation mass spectra without the need for averaging time-domain transients prior to Fourier transform. The resulting speed improvements allowed for the application of multiple FAIMS compensation voltages in the same liquid chromatography-tandem mass spectrometry experiment without increasing the overall data acquisition cycle. As a result, the application of FAIMS to label-free quantification based on intact mass spectra substantially increases the number of both identified and quantified proteoforms without penalizing quantification accuracy in comparison to traditional label-free experiments that do not adopt GPF.


Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Proteínas/análisis , Cromatografía Liquida , Escherichia coli/química
7.
Anal Chem ; 95(20): 7813-7821, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37172325

RESUMEN

In mass spectrometry-based lipidomics, complex lipid mixtures undergo chromatographic separation, are ionized, and are detected using tandem MS (MSn) to simultaneously quantify and structurally characterize eluting species. The reported structural granularity of these identified lipids is strongly reliant on the analytical techniques leveraged in a study. For example, lipid identifications from traditional collisionally activated data-dependent acquisition experiments are often reported at either species level or molecular species level. Structural resolution of reported lipid identifications is routinely enhanced by integrating both positive and negative mode analyses, requiring two separate runs or polarity switching during a single analysis. MS3+ can further elucidate lipid structure, but the lengthened MS duty cycle can negatively impact analysis depth. Recently, functionality has been introduced on several Orbitrap Tribrid mass spectrometry platforms to identify eluting molecular species on-the-fly. These real-time identifications can be leveraged to trigger downstream MSn to improve structural characterization with lessened impacts on analysis depth. Here, we describe a novel lipidomics real-time library search (RTLS) approach, which utilizes the lipid class of real-time identifications to trigger class-targeted MSn and to improve the structural characterization of phosphotidylcholines, phosphotidylethanolamines, phosphotidylinositols, phosphotidylglycerols, phosphotidylserine, and sphingomyelins in the positive ion mode. Our class-based RTLS method demonstrates improved selectivity compared to the current methodology of triggering MSn in the presence of characteristic ions or neutral losses.


Asunto(s)
Glicerofosfolípidos , Esfingomielinas , Glicerofosfolípidos/análisis , Esfingomielinas/análisis , Espectrometría de Masas en Tándem/métodos , Iones , Biblioteca de Genes
8.
Anal Chem ; 95(41): 15180-15188, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37811788

RESUMEN

Tandem mass tags (TMT) and tribrid mass spectrometers are a powerful combination for high-throughput proteomics with high quantitative accuracy. Increasingly, this technology is being used to map the effects of drugs on the proteome. However, the depth of proteomic profiling is still limited by sensitivity and speed. The new Orbitrap Ascend mass spectrometer was designed to address these limitations with a combination of hardware and software improvements. We evaluated the performance of the Ascend in multiple contexts including deep proteomic profiling. We found that the Ascend exhibited increased sensitivity, yielding higher signal-to-noise ratios than the Orbitrap Eclipse with shorter injection times. As a result, higher numbers of peptides and proteins were identified and quantified, especially with low sample input. TMT measurements had significantly improved signal-to-noise ratios, improving quantitative precision. In a fractionated 16plex sample that profiled proteomic differences across four human cell lines, the Ascend was able to quantify hundreds more proteins than the Eclipse, many of them low-abundant proteins, and the Ascend was able to quantify >8000 proteins in 30% less instrument time. We used the Ascend to analyze 8881 proteins in HCT116 cancer cells treated with covalent sulfolane/sulfolene inhibitors of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), a phosphorylation-specific peptidyl-prolyl cis-trans isomerase implicated in several cancers. We characterized these PIN1 inhibitors' effects on the proteome and identified discrepancies among the different compounds, which will facilitate a better understanding of the structure-activity relationship of this class of compounds. The Ascend was able to quantify statistically significant, potentially therapeutically relevant changes in proteins that the Eclipse could not detect.


Asunto(s)
Proteoma , Proteómica , Humanos , Proteoma/metabolismo , Espectrometría de Masas , Células HCT116 , cis-trans-Isomerasas , Peptidilprolil Isomerasa de Interacción con NIMA
9.
Anal Chem ; 95(42): 15656-15664, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37815927

RESUMEN

The growing trend toward high-throughput proteomics demands rapid liquid chromatography-mass spectrometry (LC-MS) cycles that limit the available time to gather the large numbers of MS/MS fragmentation spectra required for identification. Orbitrap analyzers scale performance with acquisition time and necessarily sacrifice sensitivity and resolving power to deliver higher acquisition rates. We developed a new mass spectrometer that combines a mass-resolving quadrupole, the Orbitrap, and the novel Asymmetric Track Lossless (Astral) analyzer. The new hybrid instrument enables faster acquisition of high-resolution accurate mass (HRAM) MS/MS spectra compared with state-of-the-art mass spectrometers. Accordingly, new proteomics methods were developed that leverage the strengths of each HRAM analyzer, whereby the Orbitrap analyzer performs full scans with a high dynamic range and resolution, synchronized with the Astral analyzer's acquisition of fast and sensitive HRAM MS/MS scans. Substantial improvements are demonstrated over previous methods using current state-of-the-art mass spectrometers.

10.
Nat Methods ; 17(4): 391-394, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32123391

RESUMEN

An Orbitrap-based ion analysis procedure determines the direct charge for numerous individual protein ions to generate true mass spectra. This individual ion mass spectrometry (I2MS) method for charge detection enables the characterization of highly complicated mixtures of proteoforms and their complexes in both denatured and native modes of operation, revealing information not obtainable by typical measurements of ensembles of ions.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas/química , Proteómica/métodos , Humanos
11.
Anal Chem ; 94(9): 3749-3755, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35188738

RESUMEN

Structural characterization of novel metabolites in drug discovery or metabolomics is one of the most challenging tasks. Multilevel fragmentation (MSn) based approaches combined with various dissociation modes are frequently utilized for facilitating structure assignment of unknown compounds. As each of the MS precursors undergoes MSn, the instrument cycle time can limit the total number of precursors analyzed in a single LC run for complex samples. This necessitates splitting data acquisition into several analyses to target lower concentration analytes in successive experiments. Here we present a new LC/MS data acquisition strategy, termed Met-IQ, where the decision to perform an MSn acquisition is automatically made in real time based on the similarity between the experimental MS2 spectrum and a spectrum in a reference spectral library for the known compounds of interest. If similarity to a spectrum in the library is found, the instrument performs a decision-dependent event, such as an MS3 spectrum. Compared to an intensity-based, data-dependent MSn experiment, only a limited number of MS3 are triggered using Met-IQ, increasing the overall MS2 instrument sampling rate. We applied this strategy to an Amprenavir sample incubated with human liver microsomes. The number of MS2 spectra increased 2-fold compared to a data dependent experiment where MS3 was triggered for each precursor, resulting in identification of 14-34% more unique potential metabolites. Furthermore, the MS2 fragments were selected to focus likely sources of useful structural information, specifically higher mass fragments to maximize acquisition of MS3 data relevant for structure assignment. The described Met-IQ strategy is not limited to metabolism experiments and can be applied to analytical samples where the detection of unknown compounds structurally related to a known compound(s) is sought.


Asunto(s)
Metabolómica , Cromatografía Liquida/métodos , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos
12.
Mol Cell Proteomics ; 19(2): 405-420, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31888965

RESUMEN

Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.


Asunto(s)
Proteómica/métodos , Rayos Ultravioleta , Animales , Anhidrasas Carbónicas , Células Cultivadas , Cromatografía Liquida , Fibroblastos , Proteínas Fúngicas , Humanos , Ratones , Miocitos Cardíacos , Mioglobina , Fotones , Pseudomonas aeruginosa , Espectrometría de Masas en Tándem , Ubiquitina
13.
Anal Chem ; 92(9): 6478-6485, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32250601

RESUMEN

The rise of sample multiplexing in quantitative proteomics for the dissection of complex phenotypic comparisons has been advanced by the development of ever more sensitive and robust instrumentation. Here, we evaluated the utility of the Orbitrap Eclipse Tribrid mass spectrometer (advanced quadrupole filter, optimized FTMS scan overhead) and new instrument control software features (Precursor Fit filtering, TurboTMT and Real-time Peptide Search filtering). Multidimensional comparisons of these novel features increased total peptide identifications by 20% for SPS-MS3 methods and 14% for HRMS2 methods. Importantly Real-time Peptide Search filtering enabled a ∼2× throughput improvement for quantification. Across the board, these sensitivity increases were attained without sacrificing quantitative accuracy. New hardware and software features enable more efficient characterization in pursuit of comparative whole proteome insights.


Asunto(s)
Péptidos/análisis , Proteómica , Espectrometría de Masas
14.
Anal Chem ; 91(24): 15732-15739, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31714757

RESUMEN

Despite the recent technological advances in Fourier transform mass spectrometry (FTMS) instrumentation, top-down proteomics (TDP) is currently mostly applied to the characterization of proteoforms <30 kDa due to the poor performance of high-resolution FTMS for the analysis of larger proteoforms and the high complexity of intact proteomes in the 30-60 kDa mass range. Here, we propose a novel data acquisition method based on ion-ion proton transfer, herein termed proton transfer charge reduction (PTCR), to investigate large proteoforms of Pseudomonas aeruginosa in a high-throughput fashion. We designed a targeted data acquisition strategy, named tPTCR, which applies two consecutive gas phase fractionation steps for obtaining intact precursor masses: first, a narrow (1.5 m/z-wide) quadrupole filter m/z transmission window is used to select a subset of charge states from all ionized proteoform cations; second, this aliquot of protein cations is subjected to PTCR in order to reduce their average charge state: upon m/z analysis in an Orbitrap, proteoform mass spectra with minimal m/z peak overlap and easy-to-interpret charge state distributions are obtained, simplifying the proteoform mass calculation. Subsequently, the same quadrupole-selected narrow m/z region of analytes is subjected to collisional dissociation to obtain proteoform sequence information, which used in combination with intact mass information leads to proteoform identification through an off-line database search. The newly proposed method was benchmarked against the previously developed "medium/high" data-dependent acquisition strategy and doubled the number of UniProt entries and proteoforms >30 kDa identified on the liquid chromatography time scale.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cromatografía Liquida/métodos , Proteoma/análisis , Protones , Pseudomonas aeruginosa/metabolismo , Programas Informáticos , Espectrometría de Masas en Tándem/métodos , Isoformas de Proteínas
15.
Anal Chem ; 91(6): 4010-4016, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30672687

RESUMEN

Multiplexed, isobaric tagging methods are powerful techniques to increase throughput, precision, and accuracy in quantitative proteomics. The dynamic range and accuracy of quantitation, however, can be limited by coisolation of tag-containing peptides that release reporter ions and conflate quantitative measurements across precursors. Methods to alleviate these effects often lead to the loss of protein and peptide identifications through online or offline filtering of interference containing spectra. To alleviate this effect, high-Field Asymmetric-waveform Ion Mobility Spectroscopy (FAIMS) has been proposed as a method to reduce precursor coisolation and improve the accuracy and dynamic range of multiplex quantitation. Here we tested the use of FAIMS to improve quantitative accuracy using previously established TMT-based interference standards (triple-knockout [TKO] and Human-Yeast Proteomics Resource [HYPER]). We observed that FAIMS robustly improved the quantitative accuracy of both high-resolution MS2 (HRMS2) and synchronous precursor selection MS3 (SPS-MS3)-based methods without sacrificing protein identifications. We further optimized and characterized the main factors that enable robust use of FAIMS for multiplexed quantitation. We highlight these factors and provide method recommendations to take advantage of FAIMS technology to improve isobaric-tag-quantification moving forward.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas de Neoplasias/metabolismo , Péptidos/análisis , Proteoma/análisis , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HCT116 , Humanos , Péptidos/metabolismo , Proteoma/metabolismo
16.
Mol Cell Proteomics ; 16(6): 1162-1171, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28404794

RESUMEN

Trypsin dominates bottom-up proteomics, but there are reasons to consider alternative enzymes. Improving sequence coverage, exposing proteomic "dark matter," and clustering post-translational modifications in different ways and with higher-order drive the pursuit of reagents complementary to trypsin. Additionally, enzymes that are easy to use and generate larger peptides that capitalize upon newer fragmentation technologies should have a place in proteomics. We expressed and characterized recombinant neprosin, a novel prolyl endoprotease of the DUF239 family, which preferentially cleaves C-terminal to proline residues under highly acidic conditions. Cleavage also occurs C-terminal to alanine with some frequency, but with an intriguingly high "skipping rate." Digestion proceeds to a stable end point, resulting in an average peptide mass of 2521 units and a higher dependence upon electron-transfer dissociation for peptide-spectrum matches. In contrast to most proline-cleaving enzymes, neprosin effectively degrades proteins of any size. For 1251 HeLa cell proteins identified in common using trypsin, Lys-C, and neprosin, almost 50% of the neprosin sequence contribution is unique. The high average peptide mass coupled with cleavage at residues not usually modified provide new opportunities for profiling clusters of post-translational modifications. We show that neprosin is a useful reagent for reading epigenetic marks on histones. It generates peptide 1-38 of histone H3 and peptide 1-32 of histone H4 in a single digest, permitting the analysis of co-occurring post-translational modifications in these important N-terminal tails.


Asunto(s)
Histonas/metabolismo , Proteómica/métodos , Células HeLa , Histonas/química , Humanos , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo
17.
Anal Chem ; 90(5): 3079-3082, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29336549

RESUMEN

Top-down hydrogen-deuterium exchange (HDX) analysis using electron capture or transfer dissociation Fourier transform mass spectrometry (FTMS) is a powerful method for the analysis of secondary structure of proteins in solution. The resolution of the method is a function of the degree of fragmentation of backbone bonds in the proteins. While fragmentation is usually extensive near the N- and C-termini, electron capture (ECD) or electron transfer dissociation (ETD) fragmentation methods sometimes lack good coverage of certain regions of the protein, most often in the middle of the sequence. Ultraviolet photodissociation (UVPD) is a recently developed fast-fragmentation technique, which provides extensive backbone fragmentation that can be complementary in sequence coverage to the aforementioned electron-based fragmentation techniques. Here, we explore the application of electrospray ionization (ESI)-UVPD FTMS on an Orbitrap Fusion Lumos Tribrid mass spectrometer to top-down HDX analysis of proteins. We have incorporated UVPD-specific fragment-ion types and fragment-ion mixtures into our isotopic envelope fitting software (HDX Match) for the top-down HDX analysis. We have shown that UVPD data is complementary to ETD, thus improving the overall resolution when used as a combined approach.

18.
Anal Chem ; 90(14): 8421-8429, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29894161

RESUMEN

Targeted top-down (TD) and middle-down (MD) mass spectrometry (MS) offer reduced sample manipulation during protein analysis, limiting the risk of introducing artifactual modifications to better capture sequence information on the proteoforms present. This provides some advantages when characterizing biotherapeutic molecules such as monoclonal antibodies, particularly for the class of biosimilars. Here, we describe the results obtained analyzing a monoclonal IgG1, either in its ∼150 kDa intact form or after highly specific digestions yielding ∼25 and ∼50 kDa subunits, using an Orbitrap mass spectrometer on a liquid chromatography (LC) time scale with fragmentation from ion-photon, ion-ion, and ion-neutral interactions. Ultraviolet photodissociation (UVPD) used a new 213 nm solid-state laser. Alternatively, we applied high-capacity electron-transfer dissociation (ETD HD), alone or in combination with higher energy collisional dissociation (EThcD). Notably, we verify the degree of complementarity of these ion activation methods, with the combination of 213 nm UVPD and ETD HD producing a new record sequence coverage of ∼40% for TD MS experiments. The addition of EThcD for the >25 kDa products from MD strategies generated up to 90% of complete sequence information in six LC runs. Importantly, we determined an optimal signal-to-noise threshold for fragment ion deconvolution to suppress false positives yet maximize sequence coverage and implemented a systematic validation of this process using the new software TDValidator. This rigorous data analysis should elevate confidence for assignment of dense MS2 spectra and represents a purposeful step toward the application of TD and MD MS for deep sequencing of monoclonal antibodies.


Asunto(s)
Antineoplásicos Inmunológicos/química , Inmunoglobulina G/química , Espectrometría de Masas/métodos , Rituximab/química , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Cromatografía Liquida/métodos , Iones/química
19.
Anal Chem ; 90(3): 2333-2340, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29272103

RESUMEN

Modern ion trap mass spectrometers are capable of collecting up to 60 tandem MS (MS/MS) scans per second, in theory providing acquisition speeds that can sample every eluting peptide precursor presented to the MS system. In practice, however, the precursor sampling capacity enabled by these ultrafast acquisition rates is often underutilized due to a host of reasons (e.g., long injection times and wide analyzer mass ranges). One often overlooked reason for this underutilization is that the instrument exhausts all the peptide features it identifies as suitable for MS/MS fragmentation. Highly abundant features can prevent annotation of lower abundance precursor ions that occupy similar mass-to-charge (m/z) space, which ultimately inhibits the acquisition of an MS/MS event. Here, we present an advanced peak determination (APD) algorithm that uses an iterative approach to annotate densely populated m/z regions to increase the number of peptides sampled during data-dependent LC-MS/MS analyses. The APD algorithm enables nearly full utilization of the sampling capacity of a quadrupole-Orbitrap-linear ion trap MS system, which yields up to a 40% increase in unique peptide identifications from whole cell HeLa lysates (approximately 53 000 in a 90 min LC-MS/MS analysis). The APD algorithm maintains improved peptide and protein identifications across several modes of proteomic data acquisition, including varying gradient lengths, different degrees of prefractionation, peptides derived from multiple proteases, and phosphoproteomic analyses. Additionally, the use of APD increases the number of peptides characterized per protein, providing improved protein quantification. In all, the APD algorithm increases the number of detectable peptide features, which maximizes utilization of the high MS/MS capacities and significantly improves sampling depth and identifications in proteomic experiments.


Asunto(s)
Algoritmos , Fragmentos de Péptidos/análisis , Precursores de Proteínas/análisis , Proteoma/análisis , Células HeLa , Humanos , Precursores de Proteínas/química , Proteoma/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
20.
Mol Cell Proteomics ; 15(3): 776-90, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26272979

RESUMEN

Histones, and their modifications, are critical components of cellular programming and epigenetic inheritance. Recently, cancer genome sequencing has uncovered driver mutations in chromatin modifying enzymes spurring high interest how such mutations change histone modification patterns. Here, we applied Top-Down mass spectrometry for the characterization of combinatorial modifications (i.e. methylation and acetylation) on full length histone H3 from human cell lines derived from multiple myeloma patients with overexpression of the histone methyltransferase MMSET as the result of a t(4;14) chromosomal translocation. Using the latest in Orbitrap-based technology for clean isolation of isobaric proteoforms containing up to 10 methylations and/or up to two acetylations, we provide extensive characterization of histone H3.1 and H3.3 proteoforms. Differential analysis of modifications by electron-based dissociation recapitulated antagonistic crosstalk between K27 and K36 methylation in H3.1, validating that full-length histone H3 (15 kDa) can be analyzed with site-specific assignments for multiple modifications. It also revealed K36 methylation in H3.3 was affected less by the overexpression of MMSET because of its higher methylation levels in control cells. The co-occurrence of acetylation with a minimum of three methyl groups in H3K9 and H3K27 suggested a hierarchy in the addition of certain modifications. Comparative analysis showed that high levels of MMSET in the myeloma-like cells drove the formation of hypermethyled proteoforms containing H3K36me2 co-existent with the repressive marks H3K9me2/3 and H3K27me2/3. Unique histone proteoforms with such "trivalent hypermethylation" (K9me2/3-K27me2/3-K36me2) were not discovered when H3.1 peptides were analyzed by Bottom-Up. Such disease-correlated proteoforms could link tightly to aberrant transcription programs driving cellular proliferation, and their precise description demonstrates that Top-Down mass spectrometry can now decode crosstalk involving up to three modified sites.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Espectrometría de Masas/métodos , Mieloma Múltiple/genética , Proteoma/metabolismo , Proteínas Represoras/genética , Línea Celular Tumoral , Epigénesis Genética , Humanos , Lisina/metabolismo , Metilación , Mieloma Múltiple/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA