Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 47(7): 1943-1955, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35316463

RESUMEN

This study focused on the ketogenic diet (KD) effects on oxidative posttranslational protein modification (PPM) as presumptive factors implicated in epileptogenesis. A 28-day of KD treatment was performed. The corneal kindling model of epileptogenesis was used. Four groups of adult male ICR mice (25-30 g) were randomized in standard rodent chow (SRC) group, KD-treatment group; SRC + kindling group; KD + kindling group (n = 10 each). Advanced oxidation protein products (AOPP) and protein carbonyl contents of brain homogenates together with differential scanning calorimetry (DSC) were evaluated. Two exothermic transitions (Exo1 and Exo2) were explored after deconvolution of the thermograms. Factor analysis was applied. The protective effect of KD in the kindling model was demonstrated with both decreased seizure score and increased seizure latency. KD significantly decreased glucose and increased ketone bodies (KB) in blood. Despite its antiseizure effect, the KD increased the AOPP level and the brain proteome's exothermic transitions, suggestive for qualitative modifications. The ratio of the two exothermic peaks (Exo2/Exo1) of the thermograms from the KD vs. SRC treated group differed more than twice (3.7 vs. 1.6). Kindling introduced the opposite effect, changing this ratio to 2.7 for the KD + kindling group. Kindling significantly increased glucose and KB in the blood whereas decreased the BW under the SRC treatment. Kindling decreased carbonyl proteins in the brain irrespectively of the diet. Further evaluations are needed to assess the nature of correspondence of calorimetric images of the brain homogenates with PPM.


Asunto(s)
Dieta Cetogénica , Epilepsia , Excitación Neurológica , Procesamiento Proteico-Postraduccional , Productos Avanzados de Oxidación de Proteínas/metabolismo , Animales , Encéfalo/metabolismo , Dieta Cetogénica/métodos , Epilepsia/dietoterapia , Glucosa , Masculino , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo , Carbonilación Proteica , Convulsiones/dietoterapia
2.
J Therm Biol ; 96: 102860, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33627287

RESUMEN

The human blood plasma proteome profile has been an area of intensive investigation and differential scanning calorimetry (DSC) has come forward as a novel tool in analyzing plasma heat capacity changes to monitor various physiological responses in health and disease. This study used DSC to assess potential alterations in the plasma heat capacity profile of albumin and globulins during extremely demanding physical exercise. We monitored the changes in denaturation profiles of those plasma proteins for five consecutive days of an extraordinary exercise training schedule in 14 young male Special Forces volunteers, as well as after a 30-day recovery period. The major effect of the prolonged intense exercise was the continuous upward shift of the albumin peak by 2°-3 °C on the initial days of exercise, with a tendency to plateau circa the 5th day of exercise. In addition, some redistribution of the denaturational enthalpy was observed upon exercise, where the globulins peak increased relative to the albumin peak. Noteworthy, the alterations in the plasma proteome denaturational profiles were not persistent, as virtually full recovery of the initial status was observed after 30 days of recovery. Our findings indicate that 5 days of exhaustive physical exercise of highly trained individuals enhanced the thermal stability of plasma albumin shifting its denaturational transition to higher temperatures. We surmise that these effects may be a result of increased blood oxygenation during the prolonged intense exercise and, consequently, of albumin oxidation as part of the overall adaptation mechanisms of the body to extreme physical and/or oxidative stress.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Ejercicio Físico , Calor , Adaptación Fisiológica , Adulto , Rastreo Diferencial de Calorimetría , Grecia , Humanos , Masculino , Personal Militar , Desnaturalización Proteica , Voluntarios , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA