Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 599(7886): 662-666, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34789877

RESUMEN

Neurotropic alphaherpesviruses initiate infection in exposed mucosal tissues and, unlike most viruses, spread rapidly to sensory and autonomic nerves where life-long latency is established1. Recurrent infections arise sporadically from the peripheral nervous system throughout the life of the host, and invasion of the central nervous system may occur, with severe outcomes2. These viruses directly recruit cellular motors for transport along microtubules in nerve axons, but how the motors are manipulated to deliver the virus to neuronal nuclei is not understood. Here, using herpes simplex virus type I and pseudorabies virus as model alphaherpesviruses, we show that a cellular kinesin motor is captured by virions in epithelial cells, carried between cells, and subsequently used in neurons to traffic to nuclei. Viruses assembled in the absence of kinesin are not neuroinvasive. The findings explain a critical component of the alphaherpesvirus neuroinvasive mechanism and demonstrate that these viruses assimilate a cellular protein as an essential proviral structural component. This principle of viral assimilation may prove relevant to other virus families and offers new strategies to combat infection.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Herpesvirus Suido 1/metabolismo , Cinesinas/metabolismo , Movimiento , Virión/metabolismo , Ensamble de Virus , Animales , Transporte Biológico , Cápside/metabolismo , Línea Celular , Núcleo Celular/virología , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Neuronas/metabolismo , Neuronas/virología , Conejos , Porcinos
2.
J Virol ; 84(24): 13019-30, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20810730

RESUMEN

Neurotropic herpesviruses depend on long-distance axon transport for the initial establishment of latency in peripheral ganglia (retrograde transport) and for viral spread in axons to exposed body surfaces following reactivation (anterograde transport). Images of neurons infected with herpes simplex virus type 1 (HSV-1), acquired using electron microscopy, have led to a debate regarding why different types of viral structures are seen in axons and which of these particles are relevant to the axon transport process. In this study, we applied time-lapse fluorescence microscopy to image HSV-1 virion components actively translocating to distal axons in primary neurons and neuronal cell lines. Key to these findings, only a small fraction of viral particles were engaged in anterograde transport during the egress phase of infection at any given time. By selective analysis of the composition of the subpopulation of actively transporting capsids, a link between transport of fully assembled HSV-1 virions and the neuronal secretory pathway was identified. Last, we have evaluated the seemingly opposing findings made in previous studies of HSV-1 axon transport in fixed cells and demonstrate a limitation to assessing the composition of individual HSV-1 particles using antibody detection methods.


Asunto(s)
Transporte Axonal , Axones/virología , Herpes Simple/virología , Neuronas/virología , Simplexvirus/fisiología , Virión/fisiología , Animales , Western Blotting , Cápside/metabolismo , Células Cultivadas , Embrión de Pollo , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Microscopía Electrónica , ARN Mensajero/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral
3.
Dis Model Mech ; 10(5): 519-535, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28468938

RESUMEN

Across all kingdoms in the tree of life, calcium (Ca2+) is an essential element used by cells to respond and adapt to constantly changing environments. In multicellular organisms, it plays fundamental roles during fertilization, development and adulthood. The inability of cells to regulate Ca2+ can lead to pathological conditions that ultimately culminate in cell death. One such pathological condition is manifested in Parkinson's disease, the second most common neurological disorder in humans, which is characterized by the aggregation of the protein, α-synuclein. This Review discusses current evidence that implicates Ca2+ in the pathogenesis of Parkinson's disease. Understanding the mechanisms by which Ca2+ signaling contributes to the progression of this disease will be crucial for the development of effective therapies to combat this devastating neurological condition.


Asunto(s)
Señalización del Calcio , Enfermedad de Parkinson/metabolismo , Calcio/metabolismo , Humanos , Orgánulos/metabolismo
4.
J Exp Med ; 212(10): 1725-38, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26324446

RESUMEN

The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1(-/-) mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1(-/-) macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1(-/-) macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1(-/-) cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response.


Asunto(s)
FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Citocinas/metabolismo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , FN-kappa B/genética , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Sepsis/genética , Sepsis/mortalidad , Proteína 1 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética , Receptor Toll-Like 4/metabolismo
5.
Cell Host Microbe ; 13(2): 193-203, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23414759

RESUMEN

Microtubule transport of herpesvirus capsids from the cell periphery to the nucleus is imperative for viral replication and, in the case of many alphaherpesviruses, transmission into the nervous system. Using the neuroinvasive herpesvirus, pseudorabies virus (PRV), we show that the viral protein 1/2 (VP1/2) tegument protein associates with the dynein/dynactin microtubule motor complex and promotes retrograde microtubule transport of PRV capsids. Functional activation of VP1/2 requires binding to the capsid protein pUL25 or removal of the capsid-binding domain. A proline-rich sequence within VP1/2 is required for the efficient interaction with the dynein/dynactin microtubule motor complex as well as for PRV virulence and retrograde axon transport in vivo. Additionally, in the absence of infection, functionally active VP1/2 is sufficient to move large surrogate cargoes via the dynein/dynactin microtubule motor complex. Thus, VP1/2 tethers PRV capsids to dynein/dynactin to enhance microtubule transport, neuroinvasion, and pathogenesis.


Asunto(s)
Dineínas/metabolismo , Herpesvirus Suido 1/patogenicidad , Células Receptoras Sensoriales/virología , Proteínas Estructurales Virales/metabolismo , Animales , Axones/metabolismo , Chlorocebus aethiops , Coinfección/metabolismo , Coinfección/virología , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Herpesvirus Suido 1/metabolismo , Humanos , Inmunoprecipitación , Masculino , Ratones , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/virología , Prolina/metabolismo , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Seudorrabia/metabolismo , Seudorrabia/patología , Seudorrabia/virología , Ratas , Ratas Long-Evans , Células Receptoras Sensoriales/metabolismo , Células Vero , Ensayo de Placa Viral , Proteínas Estructurales Virales/genética
6.
Viruses ; 3(7): 941-81, 2011 07.
Artículo en Inglés | MEDLINE | ID: mdl-21994765

RESUMEN

Following infection of exposed peripheral tissues, neurotropic alphaherpesviruses invade nerve endings and deposit their DNA genomes into the nuclei of neurons resident in ganglia of the peripheral nervous system. The end result of these events is the establishment of a life-long latent infection. Neuroinvasion typically requires efficient viral transmission through a polarized epithelium followed by long-distance transport through the viscous axoplasm. These events are mediated by the recruitment of the cellular microtubule motor proteins to the intracellular viral particle and by alterations to the cytoskeletal architecture. The focus of this review is the interplay between neurotropic herpesviruses and the cytoskeleton.


Asunto(s)
Alphaherpesvirinae/aislamiento & purificación , Citoesqueleto/virología , Infecciones por Herpesviridae/virología , Neuronas/virología , Enfermedades del Sistema Nervioso Periférico/virología , Animales , Humanos , Neuronas/patología , Enfermedades del Sistema Nervioso Periférico/patología
7.
Mol Biol Cell ; 20(12): 2820-30, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19386762

RESUMEN

As a budding yeast cell elongates toward its mating partner, cytoplasmic microtubules connect the nucleus to the cell cortex at the growth tip. The Kar3 kinesin-like motor protein is then thought to stimulate plus-end depolymerization of these microtubules, thus drawing the nucleus closer to the site where cell fusion and karyogamy will occur. Here, we show that pheromone stimulates a microtubule-independent interaction between Kar3 and the mating-specific Galpha protein Gpa1 and that Gpa1 affects both microtubule orientation and cortical contact. The membrane localization of Gpa1 was found to polarize early in the mating response, at about the same time that the microtubules begin to attach to the incipient growth site. In the absence of Gpa1, microtubules lose contact with the cortex upon shrinking and Kar3 is improperly localized, suggesting that Gpa1 is a cortical anchor for Kar3. We infer that Gpa1 serves as a positional determinant for Kar3-bound microtubule plus ends during mating.


Asunto(s)
Núcleo Celular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Genes del Tipo Sexual de los Hongos , Proteínas Asociadas a Microtúbulos/metabolismo , Feromonas/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Actinas/metabolismo , Transporte Biológico/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Recuperación de Fluorescencia tras Fotoblanqueo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/deficiencia , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA