RESUMEN
Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.
Asunto(s)
Ecosistema , Pradera , Carbono , Nitrógeno/análisis , Nutrientes , SueloRESUMEN
Plant compensatory growth responses to herbivory are mediated by soil fertility and can have significant feedbacks that affect overall ecosystem nutrient cycling. The sedge Eriophorum vaginatum is the dominant graminoid in arctic mesic tundra, and is heavily consumed by caribou. Here, we compare the principal compensatory growth models in explaining the impact of a single episode of simulated caribou grazing at two clipping intensities on E. vaginatum total growing season shoot production, nitrogen concentrations, and nitrogen pools, over two successive years across a soil nitrogen fertilisation gradient. The clipping treatments had no effect on shoot production in the growing season when they were applied, but substantially reduced growth in the following year. Surprisingly, these reductions were consistent across all levels of soil nitrogen availability. The Limiting Resource Model can best explain this legacy effect on production because it predicts alternate compensatory growth responses depending on whether or not the herbivory affects availability of the resource that most limits plant growth. Accordingly, our results suggest that shoot compensatory growth in the year after the clipping was limited by some resource other than nitrogen-probably internal carbohydrate reserves or soil phosphorus. The clipping treatments initially enhanced shoot nitrogen concentrations and pools, but shoot nitrogen pools had decreased by the end of the second year due to the legacy effect of reduced shoot production. Finally, inflorescence removal substantially stimulated new shoot production in both years. Together, our results suggest that herbivory can significantly enhance temporal and local spatial heterogeneity in graminoid growth and nitrogen cycling.
Asunto(s)
Cyperaceae , Nitrógeno , Animales , Regiones Árticas , Ecosistema , SueloRESUMEN
Global declines in caribou and reindeer (Rangifer) populations have drawn attention to the myriad of stressors that these Arctic and boreal forest herbivores currently face. Arctic warming has resulted in increased tundra shrub growth and therefore Rangifer forage quantity. However, its effects on forage quality have not yet been addressed although they may be critical to Rangifer body condition and fecundity. We investigated the impact of 8 yrs of summer warming on the quality of forage available to the Bathurst caribou herd using experimental greenhouses (n = 5) located in mesic birch hummock tundra in the central Canadian Low Arctic. Leaf forage quality and digestibility characteristics associated with nutrients (nitrogen and phosphorus), phenolics, and fiber were measured on the deciduous shrub Betula glandulosa (an important Rangifer diet component) at six time points through the growing season, and on five other very common vascular plant and lichen species in late summer. Experimental warming reduced B. glandulosa leaf nitrogen concentrations by ~10% in both late June and mid-July, but not afterwards. It also reduced late summer forage quality of the graminoid Eriophorum vaginatum by increasing phenolic concentrations 38%. Warming had mixed effects on forage quality of the lichen Cetraria cucullata in that it increased nutrient concentrations and tended to decrease fiber contents, but it also increased phenolics. Altogether, these warming-induced changes in forage quality over the growing season, and response differences among species, highlight the importance of Rangifer adaptability in diet selection. Furthermore, the early season reduction in B. glandulosa nitrogen content is a particular concern given the importance of this time for calf growth. Overall, our demonstration of the potential for significant warming impacts on forage quality at critical times for these animals underscores the importance of effective Rangifer range conservation to ensure sufficient appropriate habitat to support adaptability in forage selection in a rapidly changing environment.
Asunto(s)
Calidad de los Alimentos , Calentamiento Global , Líquenes/química , Magnoliopsida/química , Nutrientes/química , Reno/fisiología , Animales , Regiones Árticas , Líquenes/crecimiento & desarrollo , Magnoliopsida/crecimiento & desarrollo , Territorios del Noroeste , Estaciones del Año , Especificidad de la Especie , TundraRESUMEN
The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Especies en Peligro de Extinción , Biodiversidad , Congresos como Asunto , Extinción Biológica , Medición de Riesgo/métodosRESUMEN
Following creation of the 2010 Biodiversity Target under the Convention on Biological Diversity and adoption of the United Nations Millennium Development Goals, information on status and trends of biodiversity at the national level has become increasingly important to both science and policy. National red lists (NRLs) of threatened species may provide suitable data for reporting on progress toward these goals and for informing national conservation priority setting. This information will also become increasingly important for developing species- and ecosystem-based strategies for climate change adaptation. We conducted a thorough global review of NRLs in 109 countries and analyzed gaps in NRL coverage in terms of geography and taxonomy to determine priority regions and taxonomic groups for further investment. We then examined correlations between the NRL data set and gross domestic product (GDP) and vertebrate species richness. The largest geographic gap was in Oceania, followed by middle Africa, the Caribbean, and western Africa, whereas the largest taxonomic gaps were for invertebrates, fungi, and lichens. The comprehensiveness of NRL coverage within a given country was positively correlated with GDP and negatively correlated with total vertebrate richness and threatened vertebrate richness. This supports the assertion that regions with the greatest and most vulnerable biodiversity receive the least conservation attention and indicates that financial resources may be an integral limitation. To improve coverage of NRLs, we propose a combination of projects that target underrepresented taxa or regions and projects that provide the means for countries to create or update NRLs on their own. We recommend improvements in knowledge transfer within and across regions as a priority for future investment.