Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36768866

RESUMEN

Breast cancer (BC) is the most common malignancy in women worldwide [...].


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia
2.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408872

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive cancer with limited targeted therapies. RNA aptamers, suitably chemically modified, work for therapeutic purposes in the same way as antibodies. We recently generated 2'Fluoro-pyrimidines RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells. Here, we optimized three of them by shortening and proved the truncated aptamers as optimal candidates to enable active targeting to TNBC. By using prediction of secondary structure to guide truncation, we identified structural regions that account for the binding motifs of the full-length aptamers. Their chemical synthesis led to short aptamers with superb nuclease resistance, which specifically bind to TNBC target cells and rapidly internalize into acidic compartments. They interfere with the growth of TNBC cells as mammospheres, thus confirming their potential as anti-tumor agents. We propose sTN145, sTN58 and sTN29 aptamers as valuable tools for selective TNBC targeting and promising candidates for effective treatments, including therapeutic agents and targeted delivery nanovectors.


Asunto(s)
Antineoplásicos , Aptámeros de Nucleótidos , Neoplasias de la Mama Triple Negativas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
3.
Semin Cancer Biol ; 60: 202-213, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31377307

RESUMEN

Currently, metastasis remains the primary cause of death of patients with breast cancer despite the important advances in the treatment of this disease. In the complex tumour microenvironment network, several malignant and non-malignant cell types as well as components of extracellular matrix cooperate in promoting the metastatic spread of breast carcinoma. Many components of the stromal compartment are recruited from distant sites to the tumour including mesenchymal stem cells, endothelial cells, macrophages and other immune cells whereas other cells such as fibroblasts are already present in both primary and secondary lesions. When these cells come into contact with cancer cells they are "educated" and acquire a pro-tumoural phenotype, which support all the steps of the metastatic cascade. In this Review, we highlight the role played by each stromal component in guiding cancer cells in their venture towards colonizing metastatic sites.


Asunto(s)
Neoplasias de la Mama/patología , Fibroblastos Asociados al Cáncer/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Microambiente Tumoral , Adipocitos/metabolismo , Animales , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Fibroblastos Asociados al Cáncer/patología , Matriz Extracelular , Femenino , Humanos , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Metástasis de la Neoplasia , Transducción de Señal
4.
Cell Commun Signal ; 19(1): 64, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088320

RESUMEN

BACKGROUND: Invadopodia are actin-based cell-membrane protrusions associated with the extracellular matrix degradation accompanying cancer invasion. The elucidation of the molecular mechanisms leading to invadopodia formation and activity is central for the prevention of tumor spreading and growth. Protein tyrosine kinases such as Src are known to regulate invadopodia assembly, little is however known on the role of protein tyrosine phosphatases in this process. Among these enzymes, we have selected the tyrosine phosphatase Shp1 to investigate its potential role in invadopodia assembly, due to its involvement in cancer development. METHODS: Co-immunoprecipitation and immunofluorescence studies were employed to identify novel substrate/s of Shp1AQ controlling invadopodia activity. The phosphorylation level of cortactin, the Shp1 substrate identified in this study, was assessed by immunoprecipitation, in vitro phosphatase and western blot assays. Short interference RNA and a catalytically-dead mutant of Shp1 expressed in A375MM melanoma cells were used to evaluate the role of the specific Shp1-mediated dephosphorylation of cortactin. The anti-invasive proprieties of glycerophosphoinositol, that directly binds and regulates Shp1, were investigated by extracellular matrix degradation assays and in vivo mouse model of metastasis. RESULTS: The data show that Shp1 was recruited to invadopodia and promoted the dephosphorylation of cortactin at tyrosine 421, leading to an attenuated capacity of melanoma cancer cells to degrade the extracellular matrix. Controls included the use of short interference RNA and catalytically-dead mutant that prevented the dephosphorylation of cortactin and hence the decrease the extracellular matrix degradation by melanoma cells. In addition, the phosphoinositide metabolite glycerophosphoinositol facilitated the localization of Shp1 at invadopodia hence promoting cortactin dephosphorylation. This impaired invadopodia function and tumor dissemination both in vitro and in an in vivo model of melanomas. CONCLUSION: The main finding here reported is that cortactin is a specific substrate of the tyrosine phosphatase Shp1 and that its phosphorylation/dephosphorylation affects invadopodia formation and, as a consequence, the ability of melanoma cells to invade the extracellular matrix. Shp1 can thus be considered as a regulator of melanoma cell invasiveness and a potential target for antimetastatic drugs. Video abstract.


Asunto(s)
Cortactina/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Seudópodos/metabolismo , Animales , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Neoplasias Pulmonares/secundario , Melanoma/metabolismo , Melanoma/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Invasividad Neoplásica , Fosforilación , Unión Proteica , Especificidad por Sustrato
5.
Int J Mol Sci ; 21(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182416

RESUMEN

Cell plasticity is the ability that cells have to modify their phenotype, adapting to the environment. Cancer progression is under the strict control of the the tumor microenvironment that strongly determines its success by regulating the behavioral changes of tumor cells. The cross-talk between cancer and stromal cells and the interactions with the extracellular matrix, hypoxia and acidosis contribute to trigger a new tumor cell identity and to enhance tumor heterogeneity and metastatic spread. In highly aggressive triple-negative breast cancer, tumor cells show a significant capability to change their phenotype under the pressure of the hypoxic microenvironment. In this study, we investigated whether targeting the hypoxia-induced protein carbonic anhydrase IX (CA IX) could reduce triple-negative breast cancer (TNBC) cell phenotypic switching involved in processes associated with poor prognosis such as vascular mimicry (VM) and cancer stem cells (CSCs). The treatment of two TNBC cell lines (BT-549 and MDA-MB-231) with a specific CA IX siRNA or with a novel inhibitor of carbonic anhydrases (RC44) severely impaired their ability to form a vascular-like network and mammospheres and reduced their metastatic potential. In addition, the RC44 inhibitor was able to hamper the signal pathways involved in triggering VM and CSC formation. These results demonstrate that targeting hypoxia-induced cell plasticity through CA IX inhibition could be a new opportunity to selectively reduce VM and CSCs, thus improving the efficiency of existing therapies in TNBC.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Hipoxia de la Célula/fisiología , Plasticidad de la Célula/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
6.
J Cell Physiol ; 233(8): 6241-6249, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29345324

RESUMEN

Sheep is a relevant large animal model that is frequently used to test innovative tissue engineering (TE) approaches especially for bone reconstruction. Mesenchymal stem cells (MSCs) are used in TE applications because they represent key component of adult tissue repair. Importantly, MSCs from different species show similar characteristics, which facilitated their application in translational studies using animal models. Nowadays, many researches are focusing on the use of ovine mesenchymal stem cells (oMSCs) in orthopedic preclinical settings for regenerative medicine purposes. Therefore, there is a need to amplify our knowledge on the mechanisms underlying the behaviour of these cells. Recently, several studies have shown that MSC function is largely dependent on factors that MSCs release in the environment, as well as, in conditioned medium (CM). It has been demonstrated that MSCs through autocrine and paracrine signals are able to stimulate proliferation, migration, and differentiation of different type of cells including themselves. In this study, we investigated the effects of the CM produced by oMSCs on oMSCs themselves and we explored the signal pathways involved. We observed that CM caused an enhancement of oMSC migration. Furthermore, we found that CM increased levels of two membrane proteins involved in cell migration, Aquaporin 1 (AQP1), and C-X-C chemokine receptor type 4 (CXCR4), and activated Akt and Erk intracellular signal pathways. In conclusion, taken together our results suggest the high potential of autologous CM as a promising tool to modulate behaviour of MSCs thus improving their use in therapeutically approaches.


Asunto(s)
Acuaporina 1/metabolismo , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina/fisiología , Receptores CXCR4/metabolismo , Ovinos/metabolismo , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Medios de Cultivo Condicionados/metabolismo , Transducción de Señal/fisiología , Cicatrización de Heridas/fisiología
7.
Q J Nucl Med Mol Imaging ; 62(1): 112-117, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26329495

RESUMEN

BACKGROUND: In-vivo imaging of dopamine transporter (DAT), a reliable marker of degeneration of nigrostriatal dopaminergic innervation, has gained increasing interest in preclinical neurodegenerative research for studying disease mechanisms and testing new therapeutic strategies. We assessed the feasibility and the reliability of in vivo and ex vivo quantification of Methyl (3S,4S,5R)-8-(3-fluoropropyl)-3-(4-iodophenyl)-8-azabicyclo[3.2.1]octane-4-carboxylate ([123I]FP-CIT) binding to striatal DAT sites in mouse brain. METHODS: Dedicated small animal single-photon emission computed tomography (SPECT) images of [123I]FP-CIT binding were obtained in 3 groups of healthy mice: untreated (N.=6), pre-treated with lugol solution (N.=4), and pre-treated with selective dopamine transporter uptake inhibitor GBR12909 (N.=4). Ex-vivo autoradiography studies were performed at the end of SPECT studies with phosphor image system in 4 out of the 6 untreated mice and in all mice pre-treated with lugol. Regions of interest were defined over the striatum. The specific binding (SB) was calculated using the cerebral cortex as reference region. RESULTS: SPECT images in untreated mice showed high [123I]FP-CIT uptake in the striatum and extracerebral regions. Lugol pretreatment improved striatal images quality decreasing salivary and thyroid glands uptake. SB was higher (P<0.0001) in mice pre-treated with lugol (5.97±0.60) than in untreated mice (2.25±0.28). Autoradiography showed similar SB findings in untreated (2.27±0.33) and lugol-treated (4.27±0.57) mice (P<0.0001). In-vivo striatal 123I-FP-CIT SB and ex-vivo striatal 123I-FP-CIT SB were significantly correlated (r=0.87; P<0.0001). SPECT competition studies showed a significant (P<0.0001) reduction of [123I]FP-CIT SB in the striatum after GBR12909. CONCLUSIONS: We demonstrated the feasibility of [123I]FP-CIT imaging of the normal mouse brain using small-animal SPECT without pinhole collimators. The reliability of quantitative measurement of striatal [123I]FP-CIT SB is supported by competition studies showing measurable inhibition of uptake induced by GBR12909 and by the strong correlation between in vivo and ex vivo striatal [123I]FP-CIT SB. Our data also demonstrate that pre-treatment with lugol might improve striatal [123I]FP-CIT SB in mice.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neostriado/diagnóstico por imagen , Neostriado/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tropanos/metabolismo , Animales , Transporte Biológico , Dopamina/metabolismo , Estudios de Factibilidad , Ratones , Unión Proteica , Reproducibilidad de los Resultados
8.
Int J Mol Sci ; 17(7)2016 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-27409610

RESUMEN

The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1.


Asunto(s)
Acuaporina 1/metabolismo , Células de la Médula Ósea/citología , Medios de Cultivo Condicionados/farmacología , Células Madre Hematopoyéticas/metabolismo , Acuaporina 1/antagonistas & inhibidores , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Tetraetilamonio/farmacología , Microambiente Tumoral/efectos de los fármacos
9.
J Exp Clin Cancer Res ; 43(1): 92, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532439

RESUMEN

BACKGROUND: Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. METHODS: Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Iren-AuSiO2_COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRß (Gint4.T) aptamers (Iren-AuSiO2_Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRß positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRß positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. RESULTS: We show efficient capability of Iren-AuSiO2_Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRß recognition. Importantly, by targeting EGFR+ tumor/PDGFRß+ stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. CONCLUSIONS: Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.


Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Células del Estroma/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Fototerapia , Receptores ErbB/metabolismo , Organoides/metabolismo , Microambiente Tumoral
10.
J Exp Clin Cancer Res ; 43(1): 137, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711119

RESUMEN

BACKGROUND: The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS: Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS: We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models.  CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas de Unión al ADN , Melanoma , Humanos , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cells ; 12(2)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36672233

RESUMEN

Conventional chemotherapy represents the main systemic treatment used for triple-negative breast cancer (TNBC) patients, although many of them develop drug resistance. The hypoxic TME is the crucial driver in the onset of insensitivity to chemotherapy. In this research, we elucidated the role played by bone marrow-derived mesenchymal stem cells (BM-MSCs) in reducing cisplatin effects in TNBC. BT-549 and MDA-MB-231 cells, grown under hypoxic conditions in the presence of conditioned medium obtained from BM-MSCs (CM-MSCs), showed a strong cisplatin insensitivity and increased expression levels of carbonic anhydrase IX (CA IX). Therefore, we inhibited CM-MSC-induced CA IX by SLC-0111 to potentiate chemotherapy efficacy in TNBC cells. Our results showed that CM-MSCs under hypoxic conditions caused an increase in the ability of TNBC cells to form vascular structures, migrate and invade Matrigel. Cell treatment with cisplatin plus SLC-0111 was able to block these mechanisms, as well as the signaling pathways underlying them, such as p-AKT, p-ERK, CD44, MMP-2, vimentin, ß-catenin, and N-cadherin, more effectively than treatment with single agents. In addition, a significant enhancement of apoptosis assessed by annexin V, caspase-3 expression and activity was also shown. Taken together, our results demonstrated the possibility, through CA IX inhibition, of returning TNBC cells to a more chemosensitive state.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias de la Mama Triple Negativas , Humanos , Anhidrasa Carbónica IX/metabolismo , Cisplatino/farmacología , Cisplatino/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo
12.
Cells ; 12(13)2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37443843

RESUMEN

Triple-negative breast cancer (TNBC) is among the most aggressive breast cancer subtypes. Despite being initially responsive to chemotherapy, patients develop drug-resistant and metastatic tumors. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a secreted protein with a tumor suppressor function due to its anti-proteolytic activity. Nevertheless, evidence indicates that TIMP-1 binds to the CD63 receptor and activates noncanonical oncogenic signaling in several cancers, but its role in mediating TNBC chemoresistance is still largely unexplored. Here, we show that mesenchymal-like TNBC cells express TIMP-1, whose levels are further increased in cells generated to be resistant to cisplatin (Cis-Pt-R) and doxorubicin (Dox-R). Moreover, public dataset analyses indicate that high TIMP-1 levels are associated with a worse prognosis in TNBC subjected to chemotherapy. Knock-down of TIMP-1 in both Cis-Pt-R and Dox-R cells reverses their resistance by inhibiting AKT activation. Consistently, TNBC cells exposed to recombinant TIMP-1 or TIMP-1-enriched media from chemoresistant cells, acquire resistance to both cisplatin and doxorubicin. Importantly, released TIMP-1 reassociates with plasma membrane by binding to CD63 and, in the absence of CD63 expression, TIMP-1-mediated chemoresistance is blocked. Thus, our results identify TIMP-1 as a new biomarker of TNBC chemoresistance and lay the groundwork for evaluating whether blockade of TIMP-1 signal is a viable treatment strategy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico
13.
Cells ; 12(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37048151

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive malignancy characterized by the lack of expression of estrogen and progesterone receptors and amplification of human epidermal growth factor receptor 2 (HER2). Being the Epidermal Growth Factor Receptor (EGFR) highly expressed in mesenchymal TNBC and correlated with aggressive growth behavior, it represents an ideal target for anticancer drugs. Here, we have applied the phage display for selecting two highly specific peptide ligands for targeting the EGFR overexpressed in MDA-MB-231 cells, a human TNBC cell line. Molecular docking predicted the peptide-binding affinities and sites in the extracellular domain of EGFR. The binding of the FITC-conjugated peptides to human and murine TNBC cells was validated by flow cytometry. Confocal microscopy confirmed the peptide binding specificity to EGFR-positive MDA-MB-231 tumor xenograft tissues and their co-localization with the membrane EGFR. Further, the peptide stimulation did not affect the cell cycle of TNBC cells, which is of interest for their utility for tumor targeting. Our data indicate that these novel peptides are highly specific ligands for the EGFR overexpressed in TNBC cells, and thus they could be used in conjugation with nanoparticles for tumor-targeted delivery of anticancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/patología , Péptidos Cíclicos/farmacología , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Péptidos/metabolismo
14.
J Exp Clin Cancer Res ; 41(1): 122, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35365193

RESUMEN

BACKGROUND: Hypoxic tumor microenvironment (TME) contributes to the onset of many aspects of the cancer biology associated to the resistance to conventional therapies. Hypoxia is a common characteristic and negative prognostic factor in the head and neck squamous carcinomas (HNSCC) and is correlated with aggressive and invasive phenotype as well as with failure to chemo- and radio-therapies. The carbonic anhydrase isoenzymes IX and XII (CA IX/XII), regulators of extra and intracellular pH, are overexpressed in TME and are involved in adaptative changes occurring in cancer cells to survive at low O2. In this study, we aim to investigate in HNSCC cells and murine models the possibility to target CA IX/XII by the specific inhibitor SLC-0111 to potentiate the effects of cisplatin in hampering cell growth, migration and invasion. Furthermore, we analyzed the signal pathways cooperating in acquisition of a more aggressive phenotype including stemness, epithelial-mesenchymal transition and apoptotic markers. METHODS: The effects of cisplatin, CA IX/XII specific inhibitor SLC-0111, and the combinatorial treatment were tested on proliferation, migration, invasion of HNSCC cells grown in 2D and 3D models. Main signal pathways and the expression of stemness, mesenchymal and apoptotic markers were analyzed by western blotting. Molecular imaging using NIR-Annexin V and NIR-Prosense was performed in HNSCC xenografts to detect tumor growth and metastatic spread. RESULTS: HNSCC cells grown in 2D and 3D models under hypoxic conditions showed increased levels of CA IX/XII and greater resistance to cisplatin than cells grown under normoxic conditions. The addition of CA IX/XII inhibitor SLC-0111 to cisplatin sensitized HNSCC cells to the chemotherapeutic agent and caused a reduction of proliferation, migration and invasiveness. Furthermore, the combination therapy hampered activation of STAT3, AKT, ERK, and EMT program, whereas it induced apoptosis. In HNSCC xenografts the treatment with cisplatin plus SLC-0111 caused an inhibition of tumor growth and an induction of apoptosis as well as a reduction of metastatic spread at a higher extent than single agents. CONCLUSION: Our results highlight the ability of SLC-0111 to sensitize HNSCC to cisplatin by hindering hypoxia-induced signaling network that are shared among mechanisms involved in therapy resistance and metastasis.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias de Cabeza y Cuello , Animales , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/farmacología , Proliferación Celular , Cisplatino/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Ratones , Compuestos de Fenilurea , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Sulfonamidas , Microambiente Tumoral
15.
Pharmaceutics ; 14(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36297659

RESUMEN

Small interfering RNA (siRNA) therapies require effective delivery vehicles capable of carrying the siRNA cargo into target cells. To achieve tumor-targeting, a drug delivery system would have to incorporate ligands that specifically bind to receptors expressed on cancer cells to function as portals via receptor-mediated endocytosis. Cell-targeting and internalizing aptamers are the most suitable ligands for functionalization of drug-loaded nanocarriers. Here, we designed a novel aptamer-based platform for the active delivery of siRNA targeting programmed cell death-ligand 1 (PD-L1) to triple-negative breast cancer (TNBC) cells. The generated nanovectors consist of PLGA-based polymeric nanoparticles, which were loaded with PD-L1 siRNA and conjugated on their surface with a new RNA aptamer, specific for TNBC and resistant to nucleases. In vitro results demonstrated that these aptamer-conjugated nanoparticles promote siRNA uptake specifically into TNBC MDA-MB-231 and BT-549 target cells, along with its endosomal release, without recognizing non-TNBC BT-474 breast cancer cells. Their efficiency resulted in an almost complete suppression of PD-L1 expression as early as 90 min of cell treatment. This research provides a rational strategy for optimizing siRNA delivery systems for TNBC treatments.

16.
Viruses ; 14(11)2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36366497

RESUMEN

Chronic hepatitis (CH) of dysmetabolic or viral etiology has been associated with poor prognosis in patients who experienced the severe acute respiratory coronavirus virus-2 (SARS-Cov-2) infection. We aimed to explore the impact of SARS-Cov-2 infection on disease severity in a group of patients with CH. Forty-two patients with CH of different etiology were enrolled (median age, 56 years; male gender, 59%). ACE2 and TMPRSS2 were measured in plasma samples of all patients by ELISA and in the liver tissue of a subgroup of 15 patients by Western blot. Overall, 13 patients (31%) experienced SARS-Cov-2 infection: 2/15 (15%) had CHB, 5/12 (39%) had CHC, and 6/15 (46%) had non-alcoholic fatty liver disease (NAFLD). Compared to viral CH patients, NAFLD subjects showed higher circulating ACE2 levels (p = 0.0019). Similarly, hepatic expression of ACE2 was higher in subjects who underwent SARS-Cov-2 infection compared to the counterpart, (3.24 ± 1.49 vs. 1.49 ± 1.32, p = 0.032). Conversely, hepatic TMPRSS2 was significantly lower in patients who experienced symptomatic COVID-19 disease compared to asymptomatic patients (p = 0.0038). Further studies are necessary to understand the impact of COVID-19 in patients with pre-existing liver diseases.


Asunto(s)
COVID-19 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Persona de Mediana Edad , Enzima Convertidora de Angiotensina 2 , Hepatitis Crónica , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Femenino
17.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885130

RESUMEN

BACKGROUND: We have conducted a systematic review focusing on the advancements in preclinical molecular imaging to study the delivery and therapeutic efficacy of miRNAs in mouse models of breast cancer. METHODS: A systematic review of English articles published in peer-reviewed journals using PubMed, EMBASE, BIOSIS™ and Scopus was performed. Search terms included breast cancer, mouse, mice, microRNA(s) and miRNA(s). RESULTS: From a total of 2073 records, our final data extraction was from 114 manuscripts. The most frequently used murine genetic background was Balb/C (46.7%). The most frequently used model was the IV metastatic model (46.8%), which was obtained via intravenous injection (68.9%) in the tail vein. Bioluminescence was the most used frequently used tool (64%), and was used as a surrogate for tumor growth for efficacy treatment or for the evaluation of tumorigenicity in miRNA-transfected cells (29.9%); for tracking, evaluation of engraftment and for response to therapy in metastatic models (50.6%). CONCLUSIONS: This review provides a systematic and focused analysis of all the information available and related to the imaging protocols with which to test miRNA therapy in an in vivo mice model of breast cancer, and has the purpose of providing an important tool to suggest the best preclinical imaging protocol based on available evidence.

18.
J Exp Clin Cancer Res ; 40(1): 239, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294133

RESUMEN

BACKGROUND: Management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and limited targeted treatment options. Cisplatin represents a promising chemotherapeutic compound in neoadjuvant approaches and in the metastatic setting, but its use is limited by scarce bioavailability, severe systemic side effects and drug resistance. Novel site-directed aptamer-based nanotherapeutics have the potential to overcome obstacles of chemotherapy. In this study we investigated the tumor targeting and the anti-tumorigenic effectiveness of novel cisplatin-loaded and aptamer-decorated nanosystems in TNBC. METHODS: Nanotechnological procedures were applied to entrap cisplatin at high efficacy into polymeric nanoparticles (PNPs) that were conjugated on their surface with the epidermal growth factor receptor (EGFR) selective and cell-internalizing CL4 aptamer to improve targeted therapy. Internalization into TNBC MDA-MB-231 and BT-549 cells of aptamer-decorated PNPs, loaded with BODIPY505-515, was monitored by confocal microscopy using EGFR-depleted cells as negative control. Tumor targeting and biodistribution was evaluated by fluorescence reflectance imaging upon intravenously injection of Cyanine7-labeled nanovectors in nude mice bearing subcutaneous MDA-MB-231 tumors. Cytotoxicity of cisplatin-loaded PNPs toward TNBC cells was evaluated by MTT assay and the antitumor effect was assessed by tumor growth experiments in vivo and ex vivo analyses. RESULTS: We demonstrate specific, high and rapid uptake into EGFR-positive TNBC cells of CL4-conjugated fluorescent PNPs which, when loaded with cisplatin, resulted considerably more cytotoxic than the free drug and nanovectors either unconjugated or conjugated with a scrambled aptamer. Importantly, animal studies showed that the CL4-equipped PNPs achieve significantly higher tumor targeting efficiency and enhanced therapeutic effects, without any signs of systemic toxicity, compared with free cisplatin and untargeted PNPs. CONCLUSIONS: Our study proposes novel and safe drug-loaded targeted nanosystems for EGFR-positive TNBC with excellent potential for the application in cancer diagnosis and therapy.


Asunto(s)
Cisplatino/uso terapéutico , Receptores ErbB/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Cisplatino/farmacología , Humanos , Ratones , Nanopartículas , Técnica SELEX de Producción de Aptámeros
19.
Cells ; 9(12)2020 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322145

RESUMEN

Aquaporins (AQPs) are a family of membrane water channel proteins that control osmotically-driven water transport across cell membranes. Recent studies have focused on the assessment of fluid flux regulation in relation to the biological processes that maintain mesenchymal stem cell (MSC) physiology. In particular, AQPs seem to regulate MSC proliferation through rapid regulation of the cell volume. Furthermore, several reports have shown that AQPs play a crucial role in modulating MSC attachment to the extracellular matrix, their spread, and migration. Shedding light on how AQPs are able to regulate MSC physiological functions can increase our knowledge of their biological behaviours and improve their application in regenerative and reparative medicine.


Asunto(s)
Acuaporinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Acuaporinas/química , Transporte Biológico , Encéfalo/metabolismo , Diferenciación Celular , Permeabilidad de la Membrana Celular/fisiología , Movimiento Celular , Humanos , Células Madre Mesenquimatosas/citología , Isoformas de Proteínas/metabolismo , Medicina Regenerativa
20.
J Exp Clin Cancer Res ; 39(1): 180, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32892748

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies (mAbs). A huge effort is dedicated to identify actionable biomarkers allowing for combination therapies with immune-checkpoint blockade. Platelet-derived growth factor receptor ß (PDGFRß) is highly expressed in invasive TNBC, both on tumor cells and tumor microenvironment. We recently proved that tumor growth and lung metastases are impaired in mouse models of human TNBC by a high efficacious PDGFRß aptamer. Hence, we aimed at investigating the effectiveness of a novel combination treatment with the PDGFRß aptamer and anti-PD-L1 mAbs in TNBC. METHODS: The targeting ability of the anti-human PDGFRß aptamer toward the murine receptor was verified by streptavidin-biotin assays and confocal microscopy, and its inhibitory function by transwell migration assays. The anti-proliferative effects of the PDGFRß aptamer/anti-PD-L1 mAbs combination was assessed in human MDA-MB-231 and murine 4 T1 TNBC cells, both grown as monolayer or co-cultured with lymphocytes. Tumor cell lysis and cytokines secretion by lymphocytes were analyzed by LDH quantification and ELISA, respectively. Orthotopic 4 T1 xenografts in syngeneic mice were used for dissecting the effect of aptamer/mAb combination on tumor growth, metastasis and lymphocytes infiltration. Ex vivo analyses through immunohistochemistry, RT-qPCR and immunoblotting were performed. RESULTS: We show that the PDGFRß aptamer potentiates the anti-proliferative activity of anti-PD-L1 mAbs on both human and murine TNBC cells, according to its human/mouse cross-reactivity. Further, by binding to activated human and mouse lymphocytes, the aptamer enhances the anti-PD-L1 mAb-induced cytotoxicity of lymphocytes against tumor cells. Importantly, the aptamer heightens the antibody efficacy in inhibiting tumor growth and lung metastases in mice. It acts on both tumor cells, inhibiting Akt and ERK1/2 signaling pathways, and immune populations, increasing intratumoral CD8 + T cells and reducing FOXP3 + Treg cells. CONCLUSION: Co-treatment of PDGFRß aptamer with anti-PD-L1 mAbs is a viable strategy, thus providing for the first time an evidence of the efficacy of PDGFRß/PD-L1 co-targeting combination therapy in TNBC.


Asunto(s)
Aptámeros de Nucleótidos/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Terapia Molecular Dirigida , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Apoptosis , Aptámeros de Nucleótidos/administración & dosificación , Proliferación Celular , Quimioterapia Combinada , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA