Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Soc Nephrol ; 34(2): 273-290, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414417

RESUMEN

BACKGROUND: About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS: To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS: We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS: Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Humanos , Ratones , Animales , Perros , Anomalías Urogenitales/genética , Riñón/anomalías , Sistema Urinario/anomalías , Integrinas/metabolismo , Proteínas Mutantes/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética
2.
J Biol Chem ; 286(12): 10834-46, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21278252

RESUMEN

To generate and maintain epithelial cell polarity, specific sorting of proteins into vesicles destined for the apical and basolateral domain is required. Syntaxin 3 and 4 are apical and basolateral SNARE proteins important for the specificity of vesicle fusion at the apical and basolateral plasma membrane domains, respectively, but how these proteins are specifically targeted to these domains themselves is unclear. Munc18/SM proteins are potential regulators of this process. Like syntaxins, they are crucial for exocytosis and vesicle fusion. However, how munc18c and syntaxin 4 regulate the function of each other is unclear. Here, we investigated the requirement of syntaxin 4 in the delivery of basolateral membrane and secretory proteins, the basolateral targeting of syntaxin 4, and the role of munc18c in this targeting. Depletion of syntaxin 4 resulted in significant reduction of basolateral targeting, suggesting no compensation by other syntaxin forms. Mutational analysis identified amino acids Leu-25 and to a lesser extent Val-26 as essential for correct localization of syntaxin 4. Recently, it was shown that the N-terminal peptide of syntaxin 4 is involved in binding to munc18c. A mutation in this region that affects munc18c binding shows that munc18c binding is required for stabilization of syntaxin 4 at the plasma membrane but not for its correct targeting. We conclude that the N terminus serves two functions in membrane targeting. First, it harbors the sorting motif, which targets syntaxin 4 basolaterally in a munc18c-independent manner and second, it allows for munc18c binding, which stabilizes the protein in a munc18c-dependent manner.


Asunto(s)
Membrana Celular/metabolismo , Exocitosis/fisiología , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Animales , Membrana Celular/genética , Perros , Proteínas Munc18/genética , Mutación Missense , Péptidos/genética , Péptidos/metabolismo , Unión Proteica/fisiología , Estabilidad Proteica , Transporte de Proteínas/fisiología , Proteínas Qa-SNARE/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
3.
Adv Sci (Weinh) ; 8(2): 2003380, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33511022

RESUMEN

Morphogenesis is a tightly-regulated developmental process by which tissues acquire the morphology that is critical to their function. For example, epithelial cells exhibit different 2D and 3D morphologies, induced by distinct biochemical and biophysical cues from their environment. In this work, novel hybrid matrices composed of a Matrigel and synthetic oligo(ethylene glycol)-grafted polyisocyanides (PICs) hydrogels are used to form a highly tailorable environment. Through precise control of the stiffness and cell-matrix interactions, while keeping other properties constant, a broad range of morphologies induced in Madin-Darby Canine Kidney (MDCK) cells is observed. At relatively low matrix stiffness, a large morphological shift from round hollow cysts to 2D monolayers is observed, without concomitant translocation of the mechanotransduction protein Yes-associated protein (YAP). At higher stiffness levels and enhanced cell-matrix interactions, tuned by controlling the adhesive peptide density on PIC, the hybrid hydrogels induce a flattened cell morphology with simultaneous YAP translocation, suggesting activation. In 3D cultures, the latter matrices lead to the formation of tubular structures. Thus, mixed synthetic and natural gels, such as the hybrids presented here, are ideal platforms to dissect how external physical factors can be used to regulate morphogenesis in MDCK model system, and in the future, in more complex environments.

4.
EMBO Rep ; 9(9): 923-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18660750

RESUMEN

In multicellular epithelial tissues, the orientation of polarity of each cell must be coordinated. Previously, we reported that for Madin-Darby canine kidney cells in three-dimensional collagen gel culture, blockade of beta1-integrin by the AIIB2 antibody or expression of dominant-negative Rac1N17 led to an inversion of polarity, such that the apical surfaces of the cells were misorientated towards the extracellular matrix. Here, we show that this process results from the activation of RhoA. Knockdown of RhoA by short hairpin RNA reverses the inverted orientation of polarity, resulting in normal cysts. Inhibition of RhoA downstream effectors, Rho kinase (ROCK I) and myosin II, has similar effects. We conclude that the RhoA-ROCK I-myosin II pathway controls the inversion of orientation of epithelial polarity caused by AIIB2 or Rac1N17. These results might be relevant to the hyperactivation of RhoA and disruption of normal polarity frequently observed in human epithelial cancers.


Asunto(s)
Células Epiteliales/metabolismo , Miosina Tipo II/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Western Blotting , Línea Celular , Polaridad Celular , Células Epiteliales/citología , Humanos , Miosina Tipo II/genética , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA/genética
5.
Adv Sci (Weinh) ; 7(18): 2001797, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32999851

RESUMEN

In the last decade, organoid technology has developed as a primary research tool in basic biological and clinical research. The reliance on poorly defined animal-derived extracellular matrix, however, severely limits its application in regenerative and translational medicine. Here, a well-defined, synthetic biomimetic matrix based on polyisocyanide (PIC) hydrogels that support efficient and reproducible formation of mammary gland organoids (MGOs) in vitro is presented. Only decorated with the adhesive peptide RGD for cell binding, PIC hydrogels allow MGO formation from mammary fragments or from purified single mammary epithelial cells. The cystic organoids maintain their capacity to branch for over two months, which is a fundamental and complex feature during mammary gland development. It is found that small variations in the 3D matrix give rise to large changes in the MGO: the ratio of the main cell types in the MGO is controlled by the cell-gel interactions via the cell binding peptide density, whereas gel stiffness controls colony formation efficiency, which is indicative of the progenitor density. Simple hydrogel modifications will allow for future introduction and customization of new biophysical and biochemical parameters, making the PIC platform an ideal matrix for in depth studies into organ development and for application in disease models.

6.
Trends Cell Biol ; 13(4): 169-76, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12667754

RESUMEN

The most fundamental type of organization of cells in metazoa is that of epithelia, which comprise sheets of adherent cells that divide the organism into topologically and physiologically distinct spaces. Some epithelial cells cover the outside of the organism; these often form multiple layers, such as in skin. Other epithelial cells form monolayers that line internal organs, and yet others form tubes that infiltrate the whole organism, carrying liquids and gases containing nutrients, waste and other materials. These tubes can form elaborate networks in the lung, kidney, reproductive passages and vasculature tree, as well as the many glands branching from the digestive system such as the liver, pancreas and salivary glands. In vitro systems can be used to study tube formation and might help to define common principles underlying the formation of diverse types of tubular organ.


Asunto(s)
Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Polaridad Celular/fisiología , Células Epiteliales/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Células Epiteliales/citología , Epitelio/embriología , Epitelio/fisiología , Humanos , Túbulos Renales/citología , Túbulos Renales/embriología , Modelos Biológicos
7.
Mol Biol Cell ; 16(2): 433-45, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15574881

RESUMEN

Epithelial cells polarize and orient polarity in response to cell-cell and cell-matrix adhesion. Although there has been much recent progress in understanding the general polarizing machinery of epithelia, it is largely unclear how this machinery is controlled by the extracellular environment. To explore the signals from cell-matrix interactions that control orientation of cell polarity, we have used three-dimensional culture systems in which Madin-Darby canine kidney (MDCK) cells form polarized, lumen-containing structures. We show that interaction of collagen I with apical beta1-integrins after collagen overlay of a polarized MDCK monolayer induces activation of Rac1, which is required for collagen overlay-induced tubulocyst formation. Cysts, comprised of a monolayer enclosing a central lumen, form after embedding single cells in collagen. In those cultures, addition of a beta1-integrin function-blocking antibody to the collagen matrix gives rise to cysts that have defects in the organization of laminin into the basement membrane and have inverted polarity. Normal polarity is restored by either expression of activated Rac1, or the inclusion of excess laminin-1 (LN-1). Together, our results suggest a signaling pathway in which the activation of beta1-integrins orients the apical pole of polarized cysts via a mechanism that requires Rac1 activation and laminin organization into the basement membrane.


Asunto(s)
Polaridad Celular , Células Epiteliales/fisiología , Integrinas/metabolismo , Laminina/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Adhesión Celular , Técnicas de Cultivo de Célula , Línea Celular , Colágeno Tipo I/metabolismo , Perros , Activación Enzimática , Células Epiteliales/ultraestructura
8.
Mol Biol Cell ; 14(2): 748-63, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12589067

RESUMEN

Epithelial cells form monolayers of polarized cells with apical and basolateral surfaces. Madin-Darby canine kidney epithelial cells transiently lose their apico-basolateral polarity and become motile by treatment with hepatocyte growth factor (HGF), which causes the monolayer to remodel into tubules. HGF induces cells to produce basolateral extensions. Cells then migrate out of the monolayer to produce chains of cells, which go on to form tubules. Herein, we have analyzed the molecular mechanisms underlying the production of extensions and chains. We find that cells switch from an apico-basolateral polarization in the extension stage to a migratory cell polarization when in chains. Extension formation requires phosphatidyl-inositol 3-kinase activity, whereas Rho kinase controls their number and length. Microtubule dynamics and cell division are required for the formation of chains, but not for extension formation. Cells in the monolayer divide with their spindle axis parallel to the monolayer. HGF causes the spindle axis to undergo a variable "seesaw" motion, so that a daughter cells can apparently leave the monolayer to initiate a chain. Our results demonstrate the power of direct observation in investigating how individual cell behaviors, such as polarization, movement, and division are coordinated in the very complex process of producing multicellular structures.


Asunto(s)
Células Epiteliales/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Actinas/metabolismo , Animales , Western Blotting , División Celular , Línea Celular , Movimiento Celular , Células Cultivadas , Citoesqueleto/metabolismo , Perros , Proteínas Fluorescentes Verdes , Procesamiento de Imagen Asistido por Computador , Péptidos y Proteínas de Señalización Intracelular , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Microtúbulos/metabolismo , Mitomicina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Transfección , Tubulina (Proteína)/metabolismo , Quinasas Asociadas a rho
9.
Methods Enzymol ; 406: 676-91, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16472697

RESUMEN

Rho GTPases are critical regulators of epithelial morphogenesis. A powerful means to investigate their function is three-dimensional (3D) cell culture, which mimics the architecture of epithelia in vivo. However, the nature of 3D culture requires specialized techniques for morphological and biochemical analyses. Here, we describe protocols for 3D culture studies with Madin-Darby Canine Kidney (MDCK) epithelial cells: establishing cultures, immunostaining, and expressing, detecting, and assaying Rho proteins. These protocols enable the regulation of epithelial morphogenesis to be explored at a detailed molecular level.


Asunto(s)
Células Epiteliales/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Colágeno Tipo I/ultraestructura , Quistes/patología , Perros , Activación Enzimática , Matriz Extracelular/ultraestructura , Factor de Crecimiento de Hepatocito/farmacología , Coloración y Etiquetado
10.
Mol Biol Cell ; 22(12): 2031-41, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21508319

RESUMEN

Classic cadherins are important regulators of tissue morphogenesis. The predominant cadherin in epithelial cells, E-cadherin, has been extensively studied because of its critical role in normal epithelial development and carcinogenesis. Epithelial cells may also coexpress other cadherins, but their roles are less clear. The Madin Darby canine kidney (MDCK) cell line has been a popular mammalian model to investigate the role of E-cadherin in epithelial polarization and tubulogenesis. However, MDCK cells also express relatively high levels of cadherin-6, and it is unclear whether the functions of this cadherin are redundant to those of E-cadherin. We investigate the specific roles of both cadherins using a knockdown approach. Although we find that both cadherins are able to form adherens junctions at the basolateral surface, we show that they have specific and mutually exclusive roles in epithelial morphogenesis. Specifically, we find that cadherin-6 functions as an inhibitor of tubulogenesis, whereas E-cadherin is required for lumen formation. Ablation of cadherin-6 leads to the spontaneous formation of tubules, which depends on increased phosphoinositide 3-kinase (PI3K) activity. In contrast, loss of E-cadherin inhibits lumen formation by a mechanism independent of PI3K.


Asunto(s)
Cadherinas/metabolismo , Túbulos Renales/embriología , Riñón/embriología , Uniones Adherentes/metabolismo , Animales , Cadherinas/genética , Cadherinas/inmunología , Adhesión Celular , Agregación Celular , Diferenciación Celular , Línea Celular , Polaridad Celular , Perros , Células Epiteliales/citología , Células Epiteliales/metabolismo , Riñón/citología , Riñón/metabolismo , Túbulos Renales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Interferencia de ARN
11.
Mol Cell Biol ; 30(8): 1971-83, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20154149

RESUMEN

It is crucial for organ homeostasis that epithelia have effective mechanisms to restrict motility and cell proliferation in order to maintain tissue architecture. On the other hand, epithelial cells need to rapidly and transiently acquire a more mesenchymal phenotype, with high levels of cell motility and proliferation, in order to repair epithelia upon injury. Cross talk between cell-cell and cell-matrix signaling is crucial for regulating these transitions. The Pak1-betaPIX-GIT complex is an effector complex downstream of the small GTPase Rac1. We previously showed that translocation of this complex from cell-matrix to cell-cell adhesion sites was required for the establishment of contact inhibition of proliferation. In this study, we provide evidence that this translocation depends on cadherin function. Cadherins do not recruit the complex by direct interaction. Rather, we found that inhibition of the normal function of cadherin or Pak1 leads to defects in focal adhesion turnover and to increased signaling by phosphatidylinositol 3-kinase. We propose that cadherins are involved in regulation of contact inhibition by controlling the function of the Pak1-betaPIX-GIT complex at focal contacts.


Asunto(s)
Cadherinas/metabolismo , Proliferación Celular , Inhibición de Contacto/fisiología , Matriz Extracelular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal/fisiología , Quinasas p21 Activadas/metabolismo , Uniones Adherentes/metabolismo , Animales , Cadherinas/genética , Línea Celular , Cromonas/metabolismo , Perros , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/metabolismo , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Quinasas p21 Activadas/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
12.
Nat Rev Mol Cell Biol ; 3(7): 531-7, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12094219

RESUMEN

How do individual cells organize into multicellular tissues? Here, we propose that the morphogenetic behaviour of epithelial cells is guided by two distinct elements: an intrinsic differentiation programme that drives formation of a lumen-enclosing monolayer, and a growth factor-induced, transient de-differentiation that allows this monolayer to be remodelled.


Asunto(s)
Células Epiteliales/citología , Animales , Comunicación Celular , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , División Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Morfogénesis
13.
EMBO J ; 22(16): 4155-65, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12912914

RESUMEN

Wound healing in epithelia requires coordinated cell migration and proliferation regulated by signaling mechanisms that are poorly understood. Here we show that epithelial cells expressing constitutively active or kinase-dead mutants of the Rac/Cdc42 effector Pak1 fail to undergo growth arrest upon wound closure. Strikingly, this phenotype is only observed when the Pak1 kinase mutants are expressed in cells possessing a free lateral surface, i.e. one that is not engaged in contact with neighboring cells. The Pak1 kinase mutants perturb contact inhibition by a mechanism that depends on the Pak-interacting Rac-GEF PIX. In control cells, endogenous activated Pak and PIX translocate from focal complexes to cell-cell contacts during wound closure. This process is abrogated in cells expressing Pak1 kinase mutants. In contrast, Pak1 mutants rendered defective in PIX binding do not impede translocation of activated Pak and PIX, and exhibit normal wound healing. Thus, recruitment of activated Pak and PIX to cell-cell contacts is pivotal to transduction of growth-inhibitory signals from neighboring cells in epithelial wound healing.


Asunto(s)
Proteínas de Ciclo Celular/genética , Células Epiteliales/citología , Regulación Enzimológica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Proteínas de Ciclo Celular/metabolismo , División Celular , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular , Inhibición de Contacto , Perros , Activación Enzimática , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Riñón/citología , Cinética , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Cicatrización de Heridas , Quinasas p21 Activadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA