Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001606

RESUMEN

Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.


Asunto(s)
Amoníaco/química , Glutamina/química , Péptidos/química , Teoría Funcional de la Densidad , Fluorescencia , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Óptica y Fotónica/métodos
2.
Angew Chem Int Ed Engl ; 62(7): e202212063, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36316279

RESUMEN

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2 O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2 O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2 O to D2 O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2 O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Agua , Solventes
3.
Anal Chem ; 94(3): 1713-1716, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34994536

RESUMEN

A versatile setup based on a microfluidic platform allows investigation of liquid samples at various temperatures with terahertz time-domain spectroscopy. The setup is applied to develop a novel method that performs temperature and concentration calibrations of liquid samples at terahertz frequencies. Other than measuring the concentration of pure liquid phase solutions, it enables the studies of local concentration of semicrystalline systems. An equivalent solute concentration during crystallization can be calculated from the extracted absorption at low frequencies. The MgSO4-water system is discussed as an example to illustrate the idea of this method.

4.
Mol Pharm ; 19(7): 2380-2389, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35670498

RESUMEN

This study demonstrates the applicability of terahertz time-domain spectroscopy (THz-TDS) in evaluating the solid-state of the drug in selective laser sintering-based 3D printed dosage forms. Selective laser sintering is a powder bed-based 3D printing platform, which has recently demonstrated applicability in manufacturing amorphous solid dispersions (ASDs) through a layer-by-layer fusion process. When formulating ASDs, it is critical to confirm the final solid state of the drug as residual crystallinity can alter the performance of the formulation. Moreover, SLS 3D printing does not involve the mixing of the components during the process, which can lead to partially amorphous systems causing reproducibility and storage stability problems along with possibilities of unwanted polymorphism. In this study, a previously investigated SLS 3D printed ASD was characterized using THz-TDS and compared with traditionally used solid-state characterization techniques, including differential scanning calorimetry (DSC) and powder X-ray diffractometry (pXRD). THz-TDS provided deeper insights into the solid state of the dosage forms and their properties. Moreover, THz-TDS was able to detect residual crystallinity in granules prepared using twin-screw granulation for the 3D printing process, which was undetectable by the DSC and XRD. THz-TDS can prove to be a useful tool in gaining deeper insights into the solid-state properties and further aid in predicting the stability of amorphous solid dispersions.


Asunto(s)
Espectroscopía de Terahertz , Rastreo Diferencial de Calorimetría , Polvos/química , Impresión Tridimensional , Reproducibilidad de los Resultados , Solubilidad , Espectroscopía de Terahertz/métodos
5.
Mol Pharm ; 19(1): 227-234, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34854685

RESUMEN

Terahertz time-domain spectroscopy (THz-TDS) is applied to two polymorphs of acetylsalicylic acid (aspirin), and the experimental spectra are compared to lattice dynamical calculations using high accuracy density functional theory. The calculations confirm that forms I and II have very close energetic and thermodynamic properties and also that they show similar spectral features in the far-infrared region, reflecting the high degree of similarity in their crystal structures. Unique vibrational modes are identified for each polymorph which allow them to be distinguished using THz-TDS measurements. The observation of spectral features attributable to both polymorphic forms in a single sample, however, provides further evidence to support the hypothesis that crystalline aspirin typically comprises intergrown domains of forms I and II. Differences observed in the baseline of the measured THz-TDS spectra indicate a greater degree of structural disorder in the samples of form II. Calculated Gibbs free-energy curves show a turning point at 75 K, inferring that form II is expected to be more stable than form I above this temperature as a result of its greater vibrational entropy. The calculations do not account for any differences in configurational entropy that may arise from expected structural defects. Further computational work on these structures, such as ab initio molecular dynamics, would be very useful to further explore this perspective. Here, aspirin is a model system to show how the additional insight from the low-frequency vibrational information complements the structural data and allows for quantitative thermodynamic information of pharmaceutical polymorphs to be extracted. The methodology is directly applicable to other polymorphic systems.


Asunto(s)
Aspirina/química , Cristalización , Espectroscopía de Terahertz/métodos , Termodinámica , Vibración
6.
Anal Chem ; 93(4): 2449-2455, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401901

RESUMEN

In the field of non-destructive testing, terahertz sensing has been used to analyze a wide range of materials where the most successful applications have involved materials that are semi-transparent to terahertz radiation. In this work, we demonstrate the sensitivity of terahertz time-domain spectroscopy to quantify water absorption in hygrothermally aged simple and commercial epoxy systems supported by conventional gravimetric analysis.

7.
Mol Pharm ; 18(9): 3578-3587, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34428059

RESUMEN

While theophylline has been extensively studied with multiple polymorphs discovered, there is still currently no conclusive structure for the metastable theophylline form III. In this present work, by combining more widely used techniques such as X-ray diffraction and thermogravimetric analysis with more emerging techniques like low-frequency Raman and terahertz time-domain spectroscopy, to analyze the structure and dynamics of a crystalline system, it was possible to provide further evidence that the form III structure has a theophylline monohydrate structure with the water molecules removed. Solid-state density functional theory simulations were paramount in proving that this proposed structure is correct and explain how vibrational modes within the crystal structures feature and govern polymorphic transitions and the metastable form III. Through the insight provided by both simulated and experimental results, it was possible to decisively conclude the elusive crystal structure of theophylline form III. It was also shown that the correct space group for theophylline monohydrate is not P21/n but, in fact, Pc.


Asunto(s)
Teofilina/química , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Espectrometría Raman , Espectroscopía de Terahertz , Termogravimetría , Vibración , Difracción de Rayos X
8.
Phys Rev Lett ; 125(10): 103001, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955315

RESUMEN

Molecular crystals are increasingly being used for advanced applications, ranging from pharmaceutics to organic electronics, with their utility dictated by a combination of their three-dimensional structures and molecular dynamics-with anharmonicity in the low-frequency vibrations crucial to numerous bulk phenomena. Through the use of temperature-dependent x-ray diffraction and terahertz time-domain spectroscopy, the structures and dynamics of a pair of isomeric molecular crystals exhibiting nearly free rotation of a CF_{3} functional group at ambient conditions are fully characterized. Using a recently developed solid-state anharmonic vibrational correction, and applying it to a molecular crystal for the first time, the temperature-dependent spatial displacements of atoms along particular terahertz modes are obtained, and are found to be in excellent agreement with the experimental observations, including the assignment of a previously unexplained absorption feature in the low-frequency spectrum of one of the solids.

9.
Phys Chem Chem Phys ; 22(30): 17247-17254, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32685957

RESUMEN

The ß-relaxation associated with the sub-glass transition temperature (Tg,ß) is attributed to fast, localised molecular motions which can occur below the primary glass transition temperature (Tg,α). Consistent with Tg,ß being observed well-below storage temperatures, the ß-relaxation associated motions have been hypothesised to influence protein stability in the solid state and could thus impact the quality of e.g. protein powders for inhalation or reconstitution and injection. Why then do distinct solid state protein formulations with similar aggregation profiles after drying and immediate reconstitution, display different profiles when reconstituted following prolonged storage? Is the value of Tg,ß, associated with the ß-relaxation process of the system, a reliable parameter for characterising the behaviour of proteins in the solid state? Bearing this in mind, in this work we further explore the different relaxation dynamics of glassy solid state monoclonal antibody formulations using terahertz time-domain spectroscopy and dynamical mechanical analysis. By conducting a 52 week stability study on a series of multi-component spray-dried formulations, an approach for characterising and analysing the solid state dynamics and how these relate to protein stability is outlined.


Asunto(s)
Anticuerpos Monoclonales/química , Estabilidad Proteica , Proteínas/química , Simulación de Dinámica Molecular , Secado por Pulverización , Espectroscopía de Terahertz
10.
Sensors (Basel) ; 20(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155785

RESUMEN

Terahertz pulsed imaging (TPI) was introduced approximately fifteen years ago and has attracted a lot of interest in the pharmaceutical industry as a fast, non-destructive modality for quantifying film coatings on pharmaceutical dosage forms. In this topical review, we look back at the use of TPI for analysing pharmaceutical film coatings, highlighting the main contributions made and outlining the key challenges ahead.


Asunto(s)
Preparaciones Farmacéuticas/química , Imágen por Terahertz , Calibración , Formas de Dosificación , Refractometría
11.
Phys Rev Lett ; 120(19): 196002, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29799217

RESUMEN

The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.

12.
Faraday Discuss ; 211(0): 425-439, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30027978

RESUMEN

Disordered materials make up a large proportion of condensed phase systems, but the difficulties in describing their structures and molecular dynamics limit their potential applications. Disordered crystalline systems, also known as plastic crystals, offer a unique perspective into these factors because the systems retain a degree of crystallinity, reducing the degrees of freedom that must be explored when interpreting the results. However, while disordered crystals do diffract X-rays, it is difficult to fully resolve meaningful crystalline structures, with the best scenario resulting in lattice parameters. In this study, we use a combination of experimental terahertz time-domain spectroscopy, and theoretical solid-state ab initio density functional theory and molecular dynamics simulations to fully elucidate the structures and associated dynamics of organic molecular solids. The results highlight that this combination provides a complete description of the energetic and mechanistic pathways involved in the formation of disordered crystals, and highlights the importance of low-frequency dynamics in their properties. Finally, with structures fully determined and validated by the experimental results, recent progress into anharmonic calculations, namely the quasi-harmonic approximation method, enables full temperature and pressure-dependent properties to be understood within the framework of the potential energy hyper-surface structure.

13.
Pharm Res ; 34(5): 890-917, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28251425

RESUMEN

Pharmaceutical solid dosage forms (tablets or capsules) are the predominant form to administer active pharmaceutical ingredients (APIs) to the patient. Tablets are typically powder compacts consisting of several different excipients in addition to the API. Excipients are added to a formulation in order to achieve the desired fill weight of a dosage form, to improve the processability or to affect the drug release behaviour in the body. These complex porous systems undergo different mechanisms when they come in contact with physiological fluids. The performance of a drug is primarily influenced by the disintegration and dissolution behaviour of the powder compact. The disintegration process is specifically critical for immediate-release dosage forms. Its mechanisms and the factors impacting disintegration are discussed and methods used to study the disintegration in-situ are presented. This review further summarises mathematical models used to simulate disintegration phenomena and to predict drug release kinetics.


Asunto(s)
Cápsulas/química , Comprimidos/química , Tecnología Farmacéutica/métodos , Química Farmacéutica/métodos , Excipientes/química , Humanos , Polvos/química , Solubilidad
14.
Pharm Res ; 34(5): 971-989, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27095354

RESUMEN

PURPOSE: This study investigated the effect of drug-excipient miscibility on the heterogeneity and spatial distribution of phase separation in pharmaceutical solid dispersions at a micron-scale using two novel and complementary characterization techniques, thermal analysis by structural characterization (TASC) and X-ray micro-computed tomography (XµCT) in conjunction with conventional characterization methods. METHOD: Complex dispersions containing felodipine, TPGS, PEG and PEO were prepared using hot melt extrusion-injection moulding. The phase separation behavior of the samples was characterized using TASC and XµCT in conjunction with conventional thermal, microscopic and spectroscopic techniques. The in vitro drug release study was performed to demonstrate the impact of phase separation on dissolution of the dispersions. RESULTS: The conventional characterization results indicated the phase separating nature of the carrier materials in the patches and the presence of crystalline drug in the patches with the highest drug loading (30% w/w). TASC and XµCT where used to provide insight into the spatial configuration of the separate phases. TASC enabled assessment of the increased heterogeneity of the dispersions with increasing the drug loading. XµCT allowed the visualization of the accumulation of phase separated (crystalline) drug clusters at the interface of air pockets in the patches with highest drug loading which led to poor dissolution performance. Semi-quantitative assessment of the phase separated drug clusters in the patches were attempted using XµCT. CONCLUSION: TASC and XµCT can provide unique information regarding the phase separation behavior of solid dispersions which can be closely associated with important product quality indicators such as heterogeneity and microstructure.


Asunto(s)
Excipientes/química , Preparaciones Farmacéuticas/química , Cristalización , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Liberación de Fármacos , Felodipino/química , Polietilenglicoles/química , Polímeros/química , Solubilidad , Vitamina E/química , Microtomografía por Rayos X/métodos
15.
Pharm Res ; 34(5): 1012-1022, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28155076

RESUMEN

PURPOSE: The aim of this study was to establish the suitability of terahertz (THz) transmission measurements to accurately measure and predict the critical quality attributes of disintegration time and the amount of active pharmaceutical ingredient (API) dissolved after 15, 20 and 25 min for commercial tablets processed at production scale. METHODS: Samples of 18 batches of biconvex tablets from a production-scale design of experiments study into exploring the design space of a commercial tablet manufacturing process were used. The tablet production involved the process steps of high-shear wet granulation, fluid-bed drying and subsequent compaction. The 18 batches were produced using a 4 factor split plot design to study the effects of process changes on the disintegration time. Non-destructive and contactless terahertz transmission measurements of the whole tablets without prior sample preparation were performed to measure the effective refractive index and absorption coefficient of 6 tablets per batch. RESULTS: The disintegration time (R 2 = 0.86) and API dissolved after 15 min (R 2 = 0.96) linearly correlates with the effective refractive index, n eff, measured at terahertz frequencies. In contrast, no such correlation could be established from conventional hardness measurements. The magnitude of n eff represents the optical density of the sample and thus it reflects both changes in tablet porosity as well as granule density. For the absorption coefficient, α eff, we observed a better correlation with dissolution after 20 min (R 2 = 0.96) and a weaker correlation with disintegration (R 2 = 0.83) compared to n eff. CONCLUSION: The measurements of n eff and α eff provide promising predictors for the disintegration and dissolution time of tablets. The high penetration power of terahertz radiation makes it possible to sample a significant volume proportion of a tablet without any prior sample preparation. Together with the short measurement time (seconds), the potential to measure content uniformity and the fact that the method requires no chemometric models this technology shows clear promise to be established as a process analyser to non-destructively predict critical quality attributes of tablets.


Asunto(s)
Preparaciones Farmacéuticas/química , Comprimidos/química , Liberación de Fármacos , Dureza , Solubilidad , Imágen por Terahertz/métodos
16.
Pharm Res ; 34(5): 1037-1052, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28004318

RESUMEN

PURPOSE: A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XµCT) and terahertz pulsed imaging (TPI). METHODS: Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XµCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed compartmentalised structures and in vitro drug release determined. RESULTS: A clear difference in terms of pore structure between PVA and PLA prints was observed by extracting the porosity (5.5% for PVA and 0.2% for PLA prints), pore length and pore volume from the XµCT data. The print resolution and accuracy was characterised by XµCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). CONCLUSIONS: The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from the designed model. The microstructural information extracted by XµCT and TPI will assist to gain a better understanding about the performance of 3D printed dosage forms.


Asunto(s)
Preparaciones Farmacéuticas/química , Poliésteres/química , Alcohol Polivinílico/química , Química Farmacéutica/métodos , Diseño Asistido por Computadora , Formas de Dosificación , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Fenantrenos/química , Porosidad , Impresión/métodos , Impresión Tridimensional , Tecnología Farmacéutica/métodos , Imágen por Terahertz/métodos , Microtomografía por Rayos X/métodos , Rayos X
17.
Phys Chem Chem Phys ; 19(42): 28647-28652, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29043315

RESUMEN

Crystalline salt compounds composed of metal cations and organic anions are becoming increasingly popular in a number of fields, including the pharmaceutical and food industries, where such formulations can lead to increased product solubility. The origins of these effects are often in the interactions between the individual components in the crystals, and understanding these forces is paramount for the design and utilisation of such materials. Monosodium glutamate monohydrate and monopotassium glutamate monohydrate are two solids that form significantly different structures with correspondingly dissimilar dynamics, while their chemistry only differs in cation identity. Crystals of each were characterised experimentally with single-crystal X-ray diffraction and terahertz time-domain spectroscopy and theoretically using solid-state density functional theory simulations, in order to explain the observed differences in their bulk properties. Specifically, crystal orbital overlap and Hamiltonian population analyses were performed to examine the role that the individual interactions between the cation and anion played in the solid-state structures and the overall energetic profiles of these materials.

18.
Phys Chem Chem Phys ; 19(44): 30039-30047, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29094742

RESUMEN

The fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, Tg, can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why Tg can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe. Whilst this has been proposed previously, we demonstrate, using ab initio molecular-dynamics (AIMD) simulations, that it is of critical importance to carefully consider the complete PES - both the intra-molecular and inter-molecular features - in order to fully understand the entire range of atomic-dynamical processes in disordered solids. Finally, we show that it is possible to utilise this dependence to directly manipulate and harness amorphous dynamics in order to control the behaviour of such solids by using high-powered terahertz pulses to induce crystallisation and preferential crystal-polymorph growth in glasses. Combined, these findings provide compelling evidence that the PES landscape, and the corresponding energy barriers, are the ultimate controlling feature behind the atomic and molecular dynamics of disordered solids, regardless of the frequency at which they occur.

19.
J Phys Chem A ; 120(38): 7490-5, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27588684

RESUMEN

The ability of l-glutamic acid to crystallize in two different forms has long been the subject of study due to its commercial importance. While a solvent-mediated phase transformation between the α and ß polymorphs is the prevailing theory, recent reports indicate a thermal solid-solid transformation between the two may be possible. However, determining accurate thermodynamic stabilities of these crystals has been challenging. Here new low-temperature single-crystal X-ray diffraction data coupled to solid-state density functional theory simulations have enabled a detailed description to be achieved for the energetic parameters governing the stabilization of the two l-glutamic acid solids. The temperature-dependent Gibbs free-energy curves show that α-glutamic acid is the preferred form at low temperatures (<222 K) and the ß form is most stable at ambient temperatures. Terahertz time-domain spectroscopy was utilized to evaluate the quality of the intermolecular force modeling as well as to provide characteristic low-frequency spectral data that can be used for quantification of polymorph mixtures or crystal growth monitoring.


Asunto(s)
Simulación por Computador , Ácido Glutámico/química , Modelos Químicos , Espectroscopía de Terahertz , Cristalización , Enlace de Hidrógeno , Estructura Molecular , Termodinámica , Difracción de Rayos X
20.
Angew Chem Int Ed Engl ; 55(24): 6877-81, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27121300

RESUMEN

The rigidity of poly-l-proline is an important contributor to the stability of many protein secondary structures, where it has been shown to strongly influence bulk flexibility. The experimental Young's moduli of two known poly-l-proline helical forms, right-handed all-cis (Form I) and left-handed all-trans (Form II), were determined in the crystalline state by using an approach that combines terahertz time-domain spectroscopy, X-ray diffraction, and solid-state density functional theory. Contrary to expectations, the helices were found to be considerably less rigid than many other natural and synthetic polymers, as well as differing greatly from each other, with Young's moduli of 4.9 and 9.6 GPa for Forms I and II, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA