Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Amino Acids ; 53(8): 1197-1209, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34223992

RESUMEN

Riboflavin is an essential micronutrient for normal cellular growth and function. Lack of dietary riboflavin is associated with an increased risk for esophageal squamous cell carcinoma (ESCC). Previous studies have identified that the human riboflavin transporter SLC52A3a isoform (encoded by SLC52A3) plays a prominent role in esophageal cancer cell riboflavin transportation. Furthermore, SLC52A3 gene single nucleotide polymorphisms rs3746804 (T>C, L267P) and rs3746803 (C >T, T278M) are associated with ESCC risk. However, whether SLC52A3a (p.L267P) and (p.T278M) act in riboflavin transportation in esophageal cancer cell remains inconclusive. Here, we constructed the full-length SLC52A3a protein fused to green fluorescent protein (GFP-SLC52A3a-WT and mutants L267P, T278M, and L267P/T278M). It was confirmed by immunofluorescence-based confocal microscopy that SLC52A3a-WT, L267P, T278M, and L267P/T278M expressed in cell membrane, as well as in a variety of intracellular punctate structures. The live cell confocal imaging showed that SLC52A3a-L267P and L267P/T278M increased the intracellular trafficking of SLC52A3a in ESCC cells. Fluorescence recovery after photobleaching of GFP-tagged SLC52A3a meant that intracellular trafficking of SLC52A3a-L267P and L267P/T278M was rapid dynamics process, leading to its stronger ability to transport riboflavin. Taken together, the above results indicated that the rs3746804 (p.L267P) polymorphism promoted intracellular trafficking of SLC52A3a and riboflavin transportation in ESCC cells.


Asunto(s)
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Proteínas de Transporte de Membrana/genética , Polimorfismo de Nucleótido Simple , Riboflavina/metabolismo , Transporte Biológico , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Exoma , Proteínas Fluorescentes Verdes/genética , Humanos , Reacción en Cadena de la Polimerasa/métodos
2.
Amino Acids ; 49(5): 943-955, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28251354

RESUMEN

Filopodia are dynamic membrane extensions generated by F-actin bundling and are involved in cancer cell migration, invasion and metastasis. Fascin is the crucial actin-bundling protein in filopodia, with phosphorylation at fascin serine 39 being well characterized to regulate fascin-mediated actin bundling in filopodia. However, increasing evidence indicates that fascin is phosphorylated at a number of sites. Whether phosphorylation at other sites also regulates fascin function is unknown. In this study, we show that four potential phosphorylation sites in fascin, specifically tyrosine 23, serine 38, serine 39 and serine 274, regulate cell behavior and filopodia formation in esophageal squamous cancer cells. Expression of non-phosphorylatable mutations at each of the four sites promoted anchorage-independent growth, cell motility and filopodia formation, whereas phosphomimetic mutations at each of these sites inhibited these cell behaviors, implying that fascin function in esophageal squamous cancer is regulated by fascin phosphorylation at multiple sites. Furthermore, phosphorylation at S38 and S39 cooperatively regulated cell behavior and filopodia formation, with dual dephosphorylation at both S38 and S39 residues maximally enhancing cell proliferation, migration and filopodia formation, and phosphorylation at any of the two phosphorylatable sites resulting in reduced enhancement. Taken together, our results reveal that phosphorylation at fascin amino acids Y23, S38, S39 and S274, in combination, downregulates the extent of anchorage-independent growth, cell migration and filopodia formation in esophageal squamous cancer cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Epiteliales/metabolismo , Proteínas de Microfilamentos/metabolismo , Procesamiento Proteico-Postraduccional , Seudópodos/metabolismo , Serina/metabolismo , Tirosina/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Movimiento Celular , Células Epiteliales/patología , Esófago/metabolismo , Esófago/patología , Humanos , Proteínas de Microfilamentos/genética , Mutación , Fosforilación , Seudópodos/patología , Seudópodos/ultraestructura
3.
Biochim Biophys Acta ; 1853(10 Pt A): 2240-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26190820

RESUMEN

Lipocalin 2 (LCN2) is a poor prognostic factor in esophageal squamous cell carcinoma (ESCC), however its functional roles and molecular mechanisms of action remain to be clarified. Here, we described the functions and signaling pathways for LCN2 in ESCC. Overexpression of LCN2 in ESCC cells accelerated cell migration and invasion in vitro, and promoted lung metastasis in vivo. Blocking LCN2 expression inhibited its pro-oncogenic effect. Either overexpression of LCN2 or treatment with recombinant human LCN2 protein enhanced the activation of MEK/ERK pathway, which in turn increases endogenous LCN2 to increase MMP-9 activity. The decreased p-cofilin and increased p-ERM induced by pERK1/2 cause the cytoskeleton F-actin rearrangement and alter the behavior of ESCC cells mediated by LCN2. As a consequence, activation of MMP-9 and the rearrangement of F-actin throw light on the mechanisms for LCN2 in ESCC. These results imply that LCN2 promotes the migration and invasion of ESCC cells through a novel positive feedback loop.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Carcinoma de Células Escamosas/metabolismo , Movimiento Celular , Neoplasias Esofágicas/metabolismo , Lipocalinas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Fase Aguda/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Humanos , Lipocalina 2 , Lipocalinas/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas/genética
4.
Carcinogenesis ; 35(2): 292-301, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24064224

RESUMEN

To further our understanding of the pathobiology of esophageal squamous cell carcinoma (ESCC), we previously performed microRNA profiling that revealed downregulation of miR-200b in ESCC. Using quantitative real-time PCR applied to 88 patient samples, we confirmed that ESCC tumors expressed significantly lower levels of miR-200b compared with the respective adjacent benign tissues (P = 0.003). Importantly, downregulation of miR-200b significantly correlated with shortened survival (P = 0.025), lymph node metastasis (P = 0.002) and advanced clinical stage (P = 0.020) in ESCC patients. Quantitative mass spectrometry identified 57 putative miR-200b targets, including Kindlin-2, previously implicated in the regulation of tumor invasiveness and actin cytoskeleton in other cell types. Enforced expression of miR-200b mimic in ESCC cells led to a decrease of Kindlin-2 expression, whereas transfection of miR-200b inhibitor induced Kindlin-2 expression. Furthermore, transfection of miR-200b mimic or knockdown of Kindlin-2 in ESCC cells decreased cell protrusion and focal adhesion (FA) formation, reduced cell spreading and invasiveness/migration. Enforced expression of Kindlin-2 largely abrogated the inhibitory effects of miR-200b on ESCC cell invasiveness. Mechanistic studies revealed that Rho-family guanosine triphosphatases and FA kinase mediated the biological effects of the miR-200b-Kindlin-2 axis in ESCC cells. To conclude, loss of miR-200b, a frequent biochemical defect in ESCC, correlates with aggressive clinical features. The tumor suppressor effects of miR-200b may be due to its suppression of Kindlin-2, a novel target of miR-200b that modulates actin cytoskeleton, FA formation and the migratory/invasiveness properties of ESCC.


Asunto(s)
Carcinoma de Células Escamosas/patología , Citoesqueleto/metabolismo , Neoplasias Esofágicas/patología , Adhesiones Focales/fisiología , Proteínas de la Membrana/genética , MicroARNs/genética , Proteínas de Neoplasias/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Femenino , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Mutación/genética , Invasividad Neoplásica , Fosforilación , Pronóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tasa de Supervivencia , Células Tumorales Cultivadas
5.
Biochem Cell Biol ; 92(5): 379-89, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25275797

RESUMEN

Lysyl oxidase-like 2 (LOXL2) participates in every stage of cancer progression and promotes invasion and metastasis. In this study, we identified a novel alternative splicing isoform of LOXL2, namely LOXL2 Δe13, which lacked exon 13. Deletion of exon 13 caused an open reading frame shift and produced a truncated protein. LOXL2 Δe13 was expressed ubiquitously in cell lines and tissues and was mainly localized to the cytoplasm. Although it showed impaired deamination enzymatic activity compared with full-length LOXL2, LOXL2 Δe13 promoted the cell mobility and invasion of esophageal squamous cell carcinoma (ESCC) cells to greater degrees. In further research on the mechanisms, gene expression profiling and signaling pathway analysis revealed that LOXL2 Δe13 induced the expression of MAPK8 without affecting the FAK, AKT, and ERK signaling pathways. RNAi-mediated knockdown of MAPK8 could block the cell migration promoted by LOXL2De13, but it had little effect on that of full-length LOXL2. Our data suggest that LOXL2 Δe13 modulates the effects of cancer cell migration and invasion through a different mechanism from that of full-length LOXL2 and that it may play a very important role in tumor carcinogenesis and progression.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Isoformas de Proteínas , Empalme Alternativo/genética , Aminoácido Oxidorreductasas/metabolismo , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular , Neoplasias Esofágicas/enzimología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Quinasa 1 de Adhesión Focal/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Invasividad Neoplásica , Isoformas de Proteínas/genética , Transducción de Señal/fisiología
6.
Front Cell Dev Biol ; 12: 1375354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100091

RESUMEN

Background: In some patients, persistent gastrointestinal symptoms like abdominal pain, nausea, and diarrhea occur as part of long COVID-19 syndrome following acute respiratory symptoms caused by SARS-CoV-2. However, the characteristics of immune cells in the gastrointestinal tract of COVID-19 patients and their association with these symptoms remain unclear. Methodology: Data were collected from 95 COVID-19 patients. Among this cohort, 11 patients who exhibited gastrointestinal symptoms and underwent gastroscopy were selected. Using imaging mass cytometry, the gastrointestinal tissues of these patients were thoroughly analyzed to identify immune cell subgroups and investigate their spatial distribution. Results: Significant acute inflammatory responses were found in the gastrointestinal tissues, particularly in the duodenum, of COVID-19 patients. These alterations included an increase in the levels of CD68+ macrophages and CD3+CD4+ T-cells, which was more pronounced in tissues with nucleocapsid protein (NP). The amount of CD68+ macrophages positively correlates with the number of CD3+CD4+ T-cells (R = 0.783, p < 0.001), additionally, spatial neighborhood analysis uncovered decreased interactions between CD68+ macrophages and multiple immune cells were noted in NP-positive tissues. Furthermore, weighted gene coexpression network analysis was employed to extract gene signatures related to clinical features and immune responses from the RNA-seq data derived from gastrointestinal tissues from COVID-19 patients, and we validated that the MEgreen module shown positive correlation with clinical parameter (i.e., Total bilirubin, ALT, AST) and macrophages (R = 0.84, p = 0.001), but negatively correlated with CD4+ T cells (R = -0.62, p = 0.004). By contrast, the MEblue module was inversely associated with macrophages and positively related with CD4+ T cells. Gene function enrichment analyses revealed that the MEgreen module is closely associated with biological processes such as immune response activation, signal transduction, and chemotaxis regulation, indicating its role in the gastrointestinal inflammatory response. Conclusion: The findings of this study highlight the role of specific immune cell groups in the gastrointestinal inflammatory response in COVID-19 patients. Gene coexpression network analysis further emphasized the importance of the gene modules in gastrointestinal immune responses, providing potential molecular targets for the treatment of COVID-19-related gastrointestinal symptoms.

7.
J Exp Clin Cancer Res ; 42(1): 136, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254126

RESUMEN

BACKGROUND: Increasing evidence indicates that the tumor microenvironment (TME) is a crucial determinant of cancer progression. However, the clinical and pathobiological significance of stromal signatures in the TME, as a complex dynamic entity, is still unclear in esophageal squamous cell carcinoma (ESCC). METHODS: Herein, we used single-cell transcriptome sequencing data, imaging mass cytometry (IMC) and multiplex immunofluorescence staining to characterize the stromal signatures in ESCC and evaluate their prognostic values in this aggressive disease. An automated quantitative pathology imaging system determined the locations of the lamina propria, stroma, and invasive front. Subsequently, IMC spatial analyses further uncovered spatial interaction and distribution. Additionally, bioinformatics analysis was performed to explore the TME remodeling mechanism in ESCC. To define a new molecular prognostic model, we calculated the risk score of each patient based on their TME signatures and pTNM stages. RESULTS: We demonstrate that the presence of fibroblasts at the tumor invasive front was associated with the invasive depth and poor prognosis. Furthermore, the amount of α-smooth muscle actin (α-SMA)+ fibroblasts at the tumor invasive front positively correlated with the number of macrophages (MØs), but negatively correlated with that of tumor-infiltrating granzyme B+ immune cells, and CD4+ and CD8+ T cells. Spatial analyses uncovered a significant spatial interaction between α-SMA+ fibroblasts and CD163+ MØs in the TME, which resulted in spatially exclusive interactions to anti-tumor immune cells. We further validated the laminin and collagen signaling network contributions to TME remodeling. Moreover, compared with pTNM staging, a molecular prognostic model, based on expression of α-SMA+ fibroblasts at the invasive front, and CD163+ MØs, showed higher accuracy in predicting survival or recurrence in ESCC patients. Regression analysis confirmed this model is an independent predictor for survival, which also identifies a high-risk group of ESCC patients that can benefit from adjuvant therapy. CONCLUSIONS: Our newly defined biomarker signature may serve as a complement for current clinical risk stratification approaches and provide potential therapeutic targets for reversing the fibroblast-mediated immunosuppressive microenvironment.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas/patología , Linfocitos T CD8-positivos/metabolismo , Pronóstico , Fibroblastos/metabolismo , Microambiente Tumoral
8.
EMBO Mol Med ; 14(5): e14844, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35362189

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can cause gastrointestinal (GI) symptoms that often correlate with the severity of COVID-19. Here, we explored the pathogenesis underlying the intestinal inflammation in COVID-19. Plasma VEGF level was particularly elevated in patients with GI symptoms and significantly correlated with intestinal edema and disease progression. Through an animal model mimicking intestinal inflammation upon stimulation with SARS-CoV-2 spike protein, we further revealed that VEGF was over-produced in the duodenum prior to its ascent in the circulation. Mechanistically, SARS-CoV-2 spike promoted VEGF production through activating the Ras-Raf-MEK-ERK signaling in enterocytes, but not in endothelium, and inducing permeability and inflammation. Blockage of the ERK/VEGF axis was able to rescue vascular permeability and alleviate intestinal inflammation in vivo. These findings provide a mechanistic explanation and therapeutic targets for the GI symptoms of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Enterocitos/metabolismo , Humanos , Inflamación/metabolismo , Glicoproteína de la Espiga del Coronavirus , Factor A de Crecimiento Endotelial Vascular
9.
Cancer Commun (Lond) ; 41(12): 1398-1416, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34555274

RESUMEN

BACKGROUND: Fascin is crucial for cancer cell filopodium formation and tumor metastasis, and is functionally regulated by post-translational modifications. However, whether and how Fascin is regulated by acetylation remains unclear. This study explored the regulation of Fascin acetylation and its corresponding roles in filopodium formation and tumor metastasis. METHODS: Immunoprecipitation and glutathione-S-transferase pull-down assays were performed to examine the interaction between Fascin and acetyltransferase P300/CBP-associated factor (PCAF), and immunofluorescence was used to investigate their colocalization. An in vitro acetylation assay was performed to identify Fascin acetylation sites by using mass spectrometry. A specific antibody against acetylated Fascin was generated and used to detect the PCAF-mediated Fascin acetylation in esophageal squamous cell carcinoma (ESCC) cells using Western blotting by overexpressing and knocking down PCAF expression. An in vitro cell migration assay was performed, and a xenograft model was established to study in vivo tumor metastasis. Live-cell imaging and fluorescence recovery after photobleaching were used to evaluate the function and dynamics of acetylated Fascin in filopodium formation. The clinical significance of acetylated Fascin and PCAF in ESCC was evaluated using immunohistochemistry. RESULTS: Fascin directly interacted and colocalized with PCAF in the cytoplasm and was acetylated at lysine 471 (K471) by PCAF. Using the specific anti-AcK471-Fascin antibody, Fascin was found to be acetylated in ESCC cells, and the acetylation level was consequently increased after PCAF overexpression and decreased after PCAF knockdown. Functionally, Fascin-K471 acetylation markedly suppressed in vitro ESCC cell migration and in vivo tumor metastasis, whereas Fascin-K471 deacetylation exhibited a potent oncogenic function. Moreover, Fascin-K471 acetylation reduced filopodial length and density, and lifespan of ESCC cells, while its deacetylation produced the opposite effect. In the filipodium shaft, K471-acetylated Fascin displayed rapid dynamic exchange, suggesting that it remained in its monomeric form owing to its weakened actin-bundling activity. Clinically, high levels of AcK471-Fascin in ESCC tissues were strongly associated with prolonged overall survival and disease-free survival of ESCC patients. CONCLUSIONS: Fascin interacts directly with PCAF and is acetylated at lysine 471 in ESCC cells. Fascin-K471 acetylation suppressed ESCC cell migration and tumor metastasis by reducing filopodium formation through the impairment of its actin-bundling activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas de Microfilamentos/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Actinas , Humanos , Lisina/metabolismo , Procesamiento Proteico-Postraduccional
10.
Biomed Res Int ; 2019: 9828637, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886273

RESUMEN

To precisely predict the clinical outcome and determine the optimal treatment options for patients with esophageal squamous cell carcinoma (ESCC) remains challenging. Prognostic models based on multiple molecular markers of tumors have been shown to have superiority over the use of single biomarkers. Our previous studies have identified the crucial role of ezrin in ESCC progression, which prompted us to hypothesize that ezrin-associated proteins contribute to the pathobiology of ESCC. Herein, we explored the clinical value of a molecular model constructed based on ezrin-associated proteins in ESCC patients. We revealed that the ezrin-associated proteins (MYC, PDIA3, and ITGA5B1) correlated with the overall survival (OS) and disease-free survival (DFS) of patients with ESCC. High expression of MYC was associated with advanced pTNM-stage (P=0.011), and PDIA3 and ITGA5B1 were correlated with both lymph node metastasis (PDIA3: P < 0.001; ITGA5B1: P=0.001) and pTNM-stage (PDIA3: P=0.001; ITGA5B1: P=0.009). Furthermore, we found that, compared with the current TNM staging system, the molecular model elicited from the expression of MYC, PDIA3, and ITGA5B1 shows higher accuracy in predicting OS (P < 0.001) or DFS (P < 0.001) in ESCC patients. Moreover, ROC and regression analysis demonstrated that this model was an independent predictor for OS and DFS, which could also help determine a subgroup of ESCC patients that may benefit from chemoradiotherapy. In conclusion, our study has identified a novel molecular prognosis model, which may serve as a complement for current clinical risk stratification approaches and provide potential therapeutic targets for ESCC treatment.


Asunto(s)
Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Modelos Genéticos , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas de Esófago/diagnóstico , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Valor Predictivo de las Pruebas , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA