Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(5): 057201, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36800475

RESUMEN

Three-dimensional (3D) two-band Hopf insulators are a paradigmatic example of topological phases beyond the topological classifications based on powerful methods like K theory and symmetry indicators. Since this class of topological insulating phases was theoretically proposed in 2008, they have attracted significant interest owing to their conceptual novelty, connection to knot theory, and many fascinating physical properties. However, because their realization requires special forms of long-range spin-orbit coupling, they have not been achieved in any 3D system yet. Here, we report the first experimental realization of the long-sought-after Hopf insulator in a 3D circuit system. To implement the Hopf insulator, we construct basic pseudospin modules and connection modules that can realize 2×2-matrix elements and then design the circuit network according to a tight-binding Hopf insulator Hamiltonian constructed by the Hopf map. By simulating the band structure of the designed circuit network and calculating the Hopf invariant, we find that the circuit realizes a Hopf insulator with Hopf invariant equaling 4. Experimentally, we measure the band structure of a printed circuit board and find the observed properties of the bulk bands and topological surface states are in good agreement with the theoretical predictions, verifying the bulk-boundary correspondence of the Hopf insulator. Our scheme brings the experimental study of Hopf insulators to reality and opens the door to the implementation of more unexplored topological phases beyond the known topological classifications.

2.
Phys Rev Lett ; 128(2): 026405, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35089745

RESUMEN

Real topological phases featuring real Chern numbers and second-order boundary modes have been a focus of current research, but finding their material realization remains a challenge. Here, based on first-principles calculations and theoretical analysis, we reveal the already experimentally synthesized three-dimensional (3D) graphdiyne as the first realistic example of the recently proposed second-order real nodal-line semimetal. We show that the material hosts a pair of real nodal rings, each protected by two topological charges: a real Chern number and a 1D winding number. The two charges generate distinct topological boundary modes at distinct boundaries. The real Chern number leads to a pair of hinge Fermi arcs, whereas the winding number protects a double drumhead surface bands. We develop a low-energy model for 3D graphdiyne which captures the essential topological physics. Experimental aspects and possible topological transition to a 3D real Chern insulator phase are discussed.

3.
Nat Commun ; 11(1): 1111, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111829

RESUMEN

Frustrated magnets hold the promise of material realizations of exotic phases of quantum matter, but direct comparisons of unbiased model calculations with experimental measurements remain very challenging. Here we design and implement a protocol of employing many-body computation methodologies for accurate model calculations-of both equilibrium and dynamical properties-for a frustrated rare-earth magnet TmMgGaO4 (TMGO), which explains the corresponding experimental findings. Our results confirm TMGO is an ideal realization of triangular-lattice Ising model with an intrinsic transverse field. The magnetic order of TMGO is predicted to melt through two successive Kosterlitz-Thouless (KT) phase transitions, with a floating KT phase in between. The dynamical spectra calculated suggest remnant images of a vanishing magnetic stripe order that represent vortex-antivortex pairs, resembling rotons in a superfluid helium film. TMGO therefore constitutes a rare quantum magnet for realizing KT physics, and we further propose experimental detection of its intriguing properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA