Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2222035120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399402

RESUMEN

Studies investigating the evolution of flowering plants have long focused on isolating mechanisms such as pollinator specificity. Some recent studies have proposed a role for introgressive hybridization between species, recognizing that isolating processes such as pollinator specialization may not be complete barriers to hybridization. Occasional hybridization may therefore lead to distinct yet reproductively connected lineages. We investigate the balance between introgression and reproductive isolation in a diverse clade using a densely sampled phylogenomic study of fig trees (Ficus, Moraceae). Codiversification with specialized pollinating wasps (Agaonidae) is recognized as a major engine of fig diversity, leading to about 850 species. Nevertheless, some studies have focused on the importance of hybridization in Ficus, highlighting the consequences of pollinator sharing. Here, we employ dense taxon sampling (520 species) throughout Moraceae and 1,751 loci to investigate phylogenetic relationships and the prevalence of introgression among species throughout the history of Ficus. We present a well-resolved phylogenomic backbone for Ficus, providing a solid foundation for an updated classification. Our results paint a picture of phylogenetically stable evolution within lineages punctuated by occasional local introgression events likely mediated by local pollinator sharing, illustrated by clear cases of cytoplasmic introgression that have been nearly drowned out of the nuclear genome through subsequent lineage fidelity. The phylogenetic history of figs thus highlights that while hybridization is an important process in plant evolution, the mere ability of species to hybridize locally does not necessarily translate into ongoing introgression between distant lineages, particularly in the presence of obligate plant-pollinator relationships.


Asunto(s)
Ficus , Avispas , Animales , Ficus/genética , Filogenia , Genómica , Aislamiento Reproductivo , Avispas/genética , Polinización/genética
2.
Syst Biol ; 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32970819

RESUMEN

We present a 517-gene phylogenetic framework for the breadfruit genus Artocarpus (ca. 70 spp., Moraceae), making use of silica-dried leaves from recent fieldwork and herbarium specimens (some up to 106 years old) to achieve 96% taxon sampling. We explore issues relating to assembly, paralogous loci, partitions, and analysis method to reconstruct a phylogeny that is robust to variation in data and available tools. While codon partitioning did not result in any substantial topological differences, the inclusion of flanking non-coding sequence in analyses significantly increased the resolution of gene trees. We also found that increasing the size of datasets increased convergence between analysis methods but did not reduce gene tree conflict. We optimized the HybPiper targeted-enrichment sequence assembly pipeline for short sequences derived from degraded DNA extracted from museum specimens. While the subgenera of Artocarpus were monophyletic, revision is required at finer scales, particularly with respect to widespread species. We expect our results to provide a basis for further studies in Artocarpus and provide guidelines for future analyses of datasets based on target enrichment data, particularly those using sequences from both fresh and museum material, counseling careful attention to the potential of off-target sequences to improve resolution.

3.
Am J Bot ; 105(3): 404-416, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29729187

RESUMEN

PREMISE OF THE STUDY: Untapped information about allele diversity within populations and individuals (i.e., heterozygosity) could improve phylogenetic resolution and accuracy. Many phylogenetic reconstructions ignore heterozygosity because it is difficult to assemble allele sequences and combine allele data across unlinked loci, and it is unclear how reconstruction methods accommodate variable sequences. We review the common methods of including heterozygosity in phylogenetic studies and present a novel method for assembling allele sequences from target-enriched Illumina sequencing libraries. METHODS: We performed supermatrix phylogeny reconstruction and species tree estimation of Artocarpus based on three methods of accounting for heterozygous sequences: a consensus method based on de novo sequence assembly, the use of ambiguity characters, and a novel method for incorporating read information to phase alleles. We characterize the extent to which highly heterozygous sequences impeded phylogeny reconstruction and determine whether the use of allele sequences improves phylogenetic resolution or decreases topological uncertainty. KEY RESULTS: We show here that it is possible to infer phased alleles from target-enriched Illumina libraries. We find that highly heterozygous sequences do not contribute disproportionately to poor phylogenetic resolution and that the use of allele sequences for phylogeny reconstruction does not have a clear effect on phylogenetic resolution or topological consistency. CONCLUSIONS: We provide a framework for inferring phased alleles from target enrichment data and for assessing the contribution of allelic diversity to phylogenetic reconstruction. In our data set, the impact of allele phasing on phylogeny is minimal compared to the impact of using phylogenetic reconstruction methods that account for gene tree incongruence.


Asunto(s)
Alelos , Artocarpus/genética , Núcleo Celular , Genes de Plantas , Genómica/métodos , Modelos Genéticos , Filogenia , Secuencia de Bases , ADN de Plantas/análisis , Biblioteca de Genes , Sitios Genéticos , Heterocigoto , Especificidad de la Especie
4.
Am J Bot ; 105(5): 915-926, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29882953

RESUMEN

PREMISE OF THE STUDY: Underutilized crops, such as breadfruit (Artocarpus altilis, Moraceae) have the potential to improve global food security. Humans have artificially selected many cultivars of breadfruit since its domestication began approximately 3500 years ago. The goal of this research was to identify transcriptomic signals of positive selection and to develop genomic resources that may facilitate the development of improved breadfruit cultivars in the future. METHODS: A reference transcriptome of breadfruit was assembled de novo and annotated. Twenty-four transcriptomes of breadfruit and its wild relatives were generated and analyzed to reveal signals of positive selection that may have resulted from local adaptation or natural selection. Emphasis was placed on MADS-box genes, which are important because they often regulate fruiting timing and structures, and on carotenoid biosynthesis genes, which can impact the nutritional quality of the fruit. KEY RESULTS: Over 1000 genes showed signals of positive selection, and these genes were enriched for localization to plastids. Nucleotide sites and individuals under positive selection were discovered in MADS-box genes and carotenoid biosynthesis genes, with several sites located in cofactor or DNA-binding domains. A McDonald-Kreitman test comparing wild to cultivated samples revealed selection in one of the carotenoid biosynthesis genes, abscisic acid 8'-hydroxylase 3. CONCLUSIONS: This research highlights some of the many genes that may have been intentionally or unintentionally selected for during the human-mediated dispersal of breadfruit and stresses the importance of conserving a varied germplasm collection. It has revealed candidate genes for further study and produced new genomic resources for breadfruit.


Asunto(s)
Artocarpus/genética , Genes de Plantas , Selección Genética , Transcriptoma , Domesticación , Fitomejoramiento
5.
Am J Bot ; 105(5): 898-914, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874392

RESUMEN

PREMISE OF THE STUDY: Underutilized crops and their wild relatives are important resources for crop improvement and food security. Cempedak [Artocarpus integer (Thunb). Merr.] is a significant crop in Malaysia but underutilized elsewhere. Here we performed molecular characterization of cempedak and its putative wild relative bangkong (Artocarpus integer (Thunb). Merr. var. silvestris Corner) to address questions regarding the origin and diversity of cempedak. METHODS: Using data from 12 microsatellite loci, we assessed the genetic diversity and genetic/geographic structure for 353 cempedak and 175 bangkong accessions from Malaysia and neighboring countries and employed clonal analysis to characterize cempedak cultivars. We conducted haplotype network analyses on the trnH-psbA region in a subset of these samples. We also analyzed key vegetative characters that reportedly differentiate cempedak and bangkong. KEY RESULTS: We show that cempedak and bangkong are sister taxa and distinct genetically and morphologically, but the directionality of domestication origin is unclear. Genetic diversity was generally higher in bangkong than in cempedak. We found a distinct genetic cluster for cempedak from Borneo as compared to cempedak from Peninsular Malaysia. Finally, cempedak cultivars with the same names did not always share the same genetic fingerprint. CONCLUSIONS: Cempedak origins are complex, with likely admixture and hybridization with bangkong, warranting further investigation. We provide a baseline of genetic diversity of cempedak and bangkong in Malaysia and found that germplasm collections in Malaysia represent diverse coverage of the four cempedak genetic clusters detected.


Asunto(s)
Artocarpus/genética , Evolución Biológica , Variación Genética , Repeticiones de Microsatélite , Asia Sudoriental , Malasia
6.
Mol Phylogenet Evol ; 117: 49-59, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28698111

RESUMEN

BACKGROUND AND AIMS: Maclura (ca. 12spp., Moraceae) is a widespread genus of trees and woody climbers found on five continents. Maclura pomifera, the Osage orange, is considered a classic example of an anachronistic fruit. Native to the central USA, the grapefruit-sized Osage oranges are unpalatable and have no known extant native dispersers, leading to speculation that the fruits were adapted to extinct megafauna. Our aim was to reconstruct the phylogeny, estimate divergence dates, and infer ancestral ranges of Maclura in order to test the monophyly of subgeneric classifications and to understand evolution and dispersal patterns in this globally distributed group. METHODS: Employing Bayesian and maximum-likelihood methods, we reconstructed the Maclura phylogeny using two nuclear and five chloroplast loci from all Maclura species and outgroups representing all Moraceae tribes. We reconstructed ancestral ranges and syncarp sizes using a family level dated tree, and used Ornstein-Uhlenbeck models to test for significant changes in syncarp size in the Osage orange lineage. KEY RESULTS: Our analyses support a monophyletic Maclura with a Paleocene crown. Subgeneric sections were monophyletic except for the geographically-disjunct Cardiogyne. There was strong support for current species delineations except in the widespread M. cochinchinensis. South America was reconstructed as the ancestral range for Maclura with subsequent colonization of Africa and the northern hemisphere. The clade containing M. pomifera likely diverged in the Oligocene, closely coinciding with crown divergence dates of the mammoth/mastodon and sloth clades that contain possible extinct dispersers. The best fitting model for syncarp size evolution indicated an increase in both syncarp size and the rate of syncarp size evolution in the Osage orange lineage. CONCLUSIONS: We conclude that our findings are consistent with the hypothesis that M. pomifera was adapted to dispersal by extinct megafauna. In addition, we consider dispersal rather than vicariance to be most likely responsible for the present distribution of Maclura, as crown divergence post-dated the separation of Africa and South America. We propose revised sectional delimitations based on the phylogeny. This study represents a complete phylogenetic and biogeographic analysis of this globally distributed genus and provides a basis for future work, including a taxonomic revision.


Asunto(s)
Frutas/genética , Maclura/clasificación , Maclura/genética , Filogenia , África , Teorema de Bayes , Núcleo Celular/genética , Cloroplastos/genética , Frutas/anatomía & histología , Frutas/clasificación , Genes de Plantas/genética , Funciones de Verosimilitud , Maclura/anatomía & histología , Filogeografía , América del Sur
7.
Ann Bot ; 119(4): 611-627, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28073771

RESUMEN

Background and Aims: The breadfruit genus ( Artocarpus , Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate divergence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus , to better understand spatial and temporal evolutionary relationships and dispersal patterns in a geologically complex region. Methods: To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes. Six fossil-based calibrations within the Moraceae family were used to infer divergence times. Ancestral areas and estimated dispersal events were also inferred. Key Results: Artocarpeae, Artocarpus and four monophyletic Artocarpus subgenera were well supported. A late Cretaceous origin of the Artocarpeae tribe in the Americas is inferred, followed by Eocene radiation of Artocarpus in Asia, with the greatest diversification occurring during the Miocene. Borneo is reconstructed as the ancestral range of Artocarpus , with dozens of independent in situ diversification events inferred there, as well as dispersal events to other regions of Southeast Asia. Dispersal pathways of Artocarpus and its ancestors are proposed. Conclusions: Borneo was central in the diversification of the genus Artocarpus and probably served as the centre from which species dispersed and diversified in several directions. The greatest amount of diversification is inferred to have occurred during the Miocene, when sea levels fluctuated and land connections frequently existed between Borneo, mainland Asia, Sumatra and Java. Many species found in these areas have extant overlapping ranges, suggesting that sympatric speciation may have occurred. By contrast, Artocarpus diversity east of Borneo (where many of the islands have no historical connections to the landmasses of the Sunda and Sahul shelves) is unique and probably the product of over water long-distance dispersal events and subsequent diversification in allopatry. This work represents the most comprehensive Artocarpus phylogeny and biogeography study to date and supports Borneo as an evolutionary biodiversity hotspot.


Asunto(s)
Artocarpus , Artocarpus/anatomía & histología , Borneo , Evolución Química , Filogenia , Filogeografía , Dinámica Poblacional
8.
Curr Biol ; 33(2): 287-297.e3, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36608689

RESUMEN

Every crop has a story. The story of breadfruit (Artocarpus altilis), an increasingly valued staple crop in tropical agroforestry systems, is filled with intrigue, oppression, and remains incomplete. The Caribbean is a major producer and consumer of breadfruit, yet most breadfruit there came from a single 1793 introduction aimed at providing a cheap food source for slaves forced to work on British plantations. St. Vincent was the first significant point of Caribbean introduction and played a vital role in subsequent breadfruit distribution throughout the region. Hundreds of cultivars are documented in breadfruit's native Oceania. It remains a mystery, however, which ones were introduced to the Caribbean 230 years ago-still comprising the vast diversity found there today. Integrating local knowledge, historical documents and specimens, morphological data, and DNA, we identify eight major global breadfruit lineages-five of which are found in the Caribbean and likely represent the original 1793 introduction. Genetic data were able to match two Caribbean cultivar names confidently to their Oceania counterparts. Genetics and morphology together enabled additional possible matches. Many other named cultivars within lineages are too genetically similar to differentiate, highlighting difficulties of defining and identifying variation among clonally propagated triploid crops. Breadfruit is important in resilient agroforestry in tropical islands predicted to be especially affected by climate change. Findings reveal global links, building upon collective knowledge that can be used to inform breadfruit management. Results are also summarized in a brochure about breadfruit history and diversity in St. Vincent, and the Caribbean more broadly.


Asunto(s)
Artocarpus , Artocarpus/genética , Productos Agrícolas , Región del Caribe
9.
PLoS One ; 17(9): e0272680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36178903

RESUMEN

'Breadfruit' is a common tree species in Taiwan. In the indigenous Austronesian Amis culture of eastern Taiwan, 'breadfruit' is known as Pacilo, and its fruits are consumed as food. On Lanyu (Botel Tobago) where the indigenous Yami people live, 'breadfruit' is called Cipoho and used for constructing houses and plank-boats. Elsewhere in Taiwan, 'breadfruit' is also a common ornamental tree. As an essential component of traditional Yami culture, Cipoho has long been assumed to have been transported from the Batanes Island of the Philippines to Lanyu. As such, it represents a commensal species that potentially can be used to test the hypothesis of the northward Austronesian migration 'into' Taiwan. However, recent phylogenomic studies using target enrichment show that Taiwanese 'breadfruit' might not be the same as the Pacific breadfruit (Artocarpus altilis), which was domesticated in Oceania and widely cultivated throughout the tropics. To resolve persistent misidentification of this culturally and economically important tree species of Taiwan, we sampled 36 trees of Taiwanese Artocarpus and used the Moraceae probe set to enrich 529 nuclear genes. Along with 28 archived Artocarpus sequence datasets (representing a dozen taxa from all subgenera), phylogenomic analyses showed that all Taiwanese 'breadfruit' samples, together with a cultivated ornamental tree from Hawaii, form a fully supported clade within the A. treculianus complex, which is composed only of endemic Philippine species. Morphologically, the Taiwanese 'breadfruit' matches the characters of A. treculianus. Within the Taiwanese samples of A. treculianus, Amis samples form a fully supported clade derived from within the paraphyletic grade composed of Yami samples, suggesting a Lanyu origin. Results of our target enrichment phylogenomics are consistent with the scenario that Cipoho was transported northward from the Philippines to Lanyu by Yami ancestors, though the possibility that A. treculianus is native to Lanyu cannot be ruled out completely.


Asunto(s)
Artocarpus , Artocarpus/genética , Humanos , Filipinas , Filogenia , Almidón , Taiwán
10.
Curr Biol ; 32(11): R511-R512, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35671721

RESUMEN

Indigenous peoples are important stewards of biodiversity, often living near and possessing intimate knowledge of ecosystems. As a result, species new to science may be long known to indigenous people. While the scientific endeavor has long benefitted from indigenous knowledge, it has usually not engaged with it on equal footing1,2. While Linnaean taxonomy offers a broad framework for global comparisons, it may lack the detailed local insights possessed by indigenous peoples. This study illustrates how meaningful engagement with indigenous knowledge - throughout the scientific process - can improve biodiversity science and promote conservation1,2, particularly in studies of crop wild relatives, an international priority3 for food security in the face of climate change4. Two species of fruit trees recognized as distinct by the Iban and Dusun peoples, but considered a single species in current Linnaean taxonomy, were confirmed as distinct taxa by molecular studies. They correspond to Artocarpus odoratissimus Blanco and Artocarpus mutabilis Becc., whose distinguishing characteristics were clarified by members of indigenous communities.


Asunto(s)
Ecosistema , Pueblos Indígenas , Biodiversidad , Humanos , Conocimiento , Árboles
11.
Front Plant Sci ; 13: 838166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755675

RESUMEN

Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species' establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.

12.
PeerJ ; 8: e9897, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005490

RESUMEN

Limestone karsts of Southeast Asia can harbor high levels of endemism, but are highly fragmented, increasingly threatened, and their biodiversity is often poorly studied. This is true of the Padawan Limestone Area of Sarawak, Malaysia, home to the endemic Artocarpus annulatus, the closest known wild relative of two important and underutilized fruit tree crops, jackfruit (A. heterophyllus) and cempedak (A. integer). Identifying and conserving crop wild relatives is critical for the conservation of crop genetic diversity and breeding. In 2016 and 2017, five A. annulatus populations were located, and leaf material, locality information, and demographic data were collected. Microsatellite markers were used to assess genetic diversity and structure among populations, and to compare levels of genetic diversity to closely related congeneric species. Results indicate no evidence of inbreeding in A. annulatus, and there is no genetic structure among the five populations. However, diversity measures trended lower in seedlings compared to mature trees, suggesting allelic diversity may be under threat in the youngest generation of plants. Also, genetic diversity is lower in A. annulatus compared to closely related congeners. The present study provides a baseline estimate of A. annulatus genetic diversity that can be used for comparison in future studies and to other species in the unique limestone karst ecosystems. Considerations for in situ and ex situ conservation approaches are discussed.

13.
Genes (Basel) ; 11(1)2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878322

RESUMEN

Two of the most economically important plants in the Artocarpus genus are jackfruit (A. heterophyllus Lam.) and breadfruit (A. altilis (Parkinson) Fosberg). Both species are long-lived trees that have been cultivated for thousands of years in their native regions. Today they are grown throughout tropical to subtropical areas as an important source of starch and other valuable nutrients. There are hundreds of breadfruit varieties that are native to Oceania, of which the most commonly distributed types are seedless triploids. Jackfruit is likely native to the Western Ghats of India and produces one of the largest tree-borne fruit structures (reaching up to 45 kg). To-date, there is limited genomic information for these two economically important species. Here, we generated 273 Gb and 227 Gb of raw data from jackfruit and breadfruit, respectively. The high-quality reads from jackfruit were assembled into 162,440 scaffolds totaling 982 Mb with 35,858 genes. Similarly, the breadfruit reads were assembled into 180,971 scaffolds totaling 833 Mb with 34,010 genes. A total of 2822 and 2034 expanded gene families were found in jackfruit and breadfruit, respectively, enriched in pathways including starch and sucrose metabolism, photosynthesis, and others. The copy number of several starch synthesis-related genes were found to be increased in jackfruit and breadfruit compared to closely-related species, and the tissue-specific expression might imply their sugar-rich and starch-rich characteristics. Overall, the publication of high-quality genomes for jackfruit and breadfruit provides information about their specific composition and the underlying genes involved in sugar and starch metabolism.


Asunto(s)
Artocarpus/genética , Secuenciación Completa del Genoma/métodos , Artocarpus/clasificación , Tamaño del Genoma , Genoma de Planta , Anotación de Secuencia Molecular
14.
Appl Plant Sci ; 4(7)2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27437173

RESUMEN

PREMISE OF THE STUDY: We used moderately low-coverage (17×) whole-genome sequencing of Artocarpus camansi (Moraceae) to develop genomic resources for Artocarpus and Moraceae. METHODS AND RESULTS: A de novo assembly of Illumina short reads (251,378,536 pairs, 2 × 100 bp) accounted for 93% of the predicted genome size. Predicted coding regions were used in a three-way orthology search with published genomes of Morus notabilis and Cannabis sativa. Phylogenetic markers for Moraceae were developed from 333 inferred single-copy exons. Ninety-eight putative MADS-box genes were identified. Analysis of all predicted coding regions resulted in preliminary annotation of 49,089 genes. An analysis of synonymous substitutions for pairs of orthologs (Ks analysis) in M. notabilis and A. camansi strongly suggested a lineage-specific whole-genome duplication in Artocarpus. CONCLUSIONS: This study substantially increases the genomic resources available for Artocarpus and Moraceae and demonstrates the value of low-coverage de novo assemblies for nonmodel organisms with moderately large genomes.

15.
Appl Plant Sci ; 4(7)2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27437175

RESUMEN

PREMISE OF THE STUDY: Using sequence data generated via target enrichment for phylogenetics requires reassembly of high-throughput sequence reads into loci, presenting a number of bioinformatics challenges. We developed HybPiper as a user-friendly platform for assembly of gene regions, extraction of exon and intron sequences, and identification of paralogous gene copies. We test HybPiper using baits designed to target 333 phylogenetic markers and 125 genes of functional significance in Artocarpus (Moraceae). METHODS AND RESULTS: HybPiper implements parallel execution of sequence assembly in three phases: read mapping, contig assembly, and target sequence extraction. The pipeline was able to recover nearly complete gene sequences for all genes in 22 species of Artocarpus. HybPiper also recovered more than 500 bp of nontargeted intron sequence in over half of the phylogenetic markers and identified paralogous gene copies in Artocarpus. CONCLUSIONS: HybPiper was designed for Linux and Mac OS X and is freely available at https://github.com/mossmatters/HybPiper.

16.
Appl Plant Sci ; 3(9)2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26421253

RESUMEN

PREMISE OF THE STUDY: Chloroplast microsatellite loci were characterized from transcriptomes of Artocarpus altilis (breadfruit) and A. camansi (breadnut). They were tested in A. odoratissimus (terap) and A. altilis and evaluated in silico for two congeners. METHODS AND RESULTS: Fifteen simple sequence repeats (SSRs) were identified in chloroplast sequences from four Artocarpus transcriptome assemblies. The markers were evaluated using capillary electrophoresis in A. odoratissimus (105 accessions) and A. altilis (73). They were also evaluated in silico in A. altilis (10), A. camansi (6), and A. altilis × A. mariannensis (7) transcriptomes. All loci were polymorphic in at least one species, with all 15 polymorphic in A. camansi. Per species, average alleles per locus ranged between 2.2 and 2.5. Three loci had evidence of fragment-length homoplasy. CONCLUSIONS: These markers will complement existing nuclear markers by enabling confident identification of maternal and clone lines, which are often important in vegetatively propagated crops such as breadfruit.

17.
Appl Plant Sci ; 1(7)2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25202565

RESUMEN

PREMISE OF THE STUDY: Microsatellite loci were isolated and characterized from enriched genomic libraries of Artocarpus altilis (breadfruit) and tested in four Artocarpus species and one hybrid. The microsatellite markers provide new tools for further studies in Artocarpus. • METHODS AND RESULTS: A total of 25 microsatellite loci were evaluated across four Artocarpus species and one hybrid. Twenty-one microsatellite loci were evaluated on A. altilis (241), A. camansi (34), A. mariannensis (15), and A. altilis × mariannensis (64) samples. Nine of those loci plus four additional loci were evaluated on A. heterophyllus (jackfruit, 426) samples. All loci are polymorphic for at least one species. The average number of alleles ranges from two to nine within taxa. • CONCLUSIONS: These microsatellite primers will facilitate further studies on the genetic structure and evolutionary and domestication history of Artocarpus species. They will aid in cultivar identification and establishing germplasm conservation strategies for breadfruit and jackfruit.

18.
Mol Phylogenet Evol ; 37(2): 402-16, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16112884

RESUMEN

The biogeographical history of the mulberry family (Moraceae) was investigated using phylogenetic inferences from nuclear and chloroplast DNA, molecular dating with multiple fossil calibrations, and independent geological evidence. The Moraceae are centered in the tropics which has invited the hypothesis that the family has Gondwanan origins and extant distribution is the result of vicariance due to the break-up of Gondwana. However, the cosmopolitan distribution of Moraceae suggests a more complicated biogeographical history. The timing and location of Moraceae diversification also bears on the origin of the fig pollination mutualism, a model for the study of coevolution and specialization. Recent molecular dating of pollinating fig wasps suggested that an ancient Gondwanan origin coupled with vicariance and dispersal could account for the present day distribution of the mutualism. Here, we provide the first assessment of this hypothesis based on dating of figs and their relatives. Minimum age estimates suggest that the Moraceae had diversified by at least the mid-Cretaceous and major clades including the figs may have radiated during the Tertiary after the break-up of Gondwanaland. Molecular evidence together with Eurasian fossils suggest that the early diversification of Moraceae in Eurasia and subsequent migration into the southern hemisphere is at least as plausible as the Gondwanan hypothesis. These findings invite a reevaluation of the biogeography of fig pollination and highlight the need for incorporating multiple sources of evidence in biogeographical reconstructions.


Asunto(s)
Núcleo Celular/genética , ADN de Cloroplastos/genética , Evolución Molecular , Moraceae/clasificación , Filogenia , Geografía , Moraceae/genética , Morus/clasificación
19.
Am J Bot ; 91(5): 760-6, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-21653430

RESUMEN

Breadfruit (Artocarpus altilis, Moraceae), a traditional starch crop in Oceania, has enjoyed legendary status ever since its role in the infamous mutiny aboard the H.M.S. Bounty in 1789, yet its origins remain unclear. Breadfruit's closest relatives are A. camansi and A. mariannensis. DNA fingerprinting data (AFLP, amplified fragment length polymorphisms) from over 200 breadfruit cultivars, 30 A. camansi, and 24 A. mariannensis individuals were used to investigate the relationships among these species. Multivariate analyses and the identification of species-specific AFLP markers indicate at least two origins of breadfruit. Most Melanesian and Polynesian cultivars appear to have arisen over generations of vegetative propagation and selection from A. camansi. In contrast, most Micronesian breadfruit cultivars appear to be the result of hybridization between A. camansi-derived breadfruit and A. mariannensis. Because breadfruit depends on humans for dispersal, the data were compared to theories on the human colonization of Oceania. The results agree with the well-supported theory that humans settled Polynesia via Melanesia. Additionally, a long-distance migration from eastern Melanesia into Micronesia is supported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA