Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(23): 4298-4316.e21, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36323317

RESUMEN

After ingestion of toxin-contaminated food, the brain initiates a series of defensive responses (e.g., nausea, retching, and vomiting). How the brain detects ingested toxin and coordinates diverse defensive responses remains poorly understood. Here, we developed a mouse-based paradigm to study defensive responses induced by bacterial toxins. Using this paradigm, we identified a set of molecularly defined gut-to-brain and brain circuits that jointly mediate toxin-induced defensive responses. The gut-to-brain circuit consists of a subset of Htr3a+ vagal sensory neurons that transmit toxin-related signals from intestinal enterochromaffin cells to Tac1+ neurons in the dorsal vagal complex (DVC). Tac1+ DVC neurons drive retching-like behavior and conditioned flavor avoidance via divergent projections to the rostral ventral respiratory group and lateral parabrachial nucleus, respectively. Manipulating these circuits also interferes with defensive responses induced by the chemotherapeutic drug doxorubicin. These results suggest that food poisoning and chemotherapy recruit similar circuit modules to initiate defensive responses.


Asunto(s)
Eje Cerebro-Intestino , Núcleos Parabraquiales , Nervio Vago , Animales , Ratones , Neuronas/fisiología , Neuronas Aferentes/fisiología , Nervio Vago/fisiología
2.
EMBO Rep ; 24(3): e55762, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36597993

RESUMEN

N6 -Methyladenosine (m6 A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m6 A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m6 A homeostasis remain elusive. Here, we show that METTL14 stability is regulated by the competitive interaction of METTL3 with the E3 ligase STUB1. STUB1 directly interacts with METTL14 to mediate its ubiquitination at lysine residues K148, K156, and K162 for subsequent degradation, resulting in a significant decrease in total m6 A levels. The amino acid regions 450-454 and 464-480 of METTL3 are essential to promote METTL14 stabilization. Changes in STUB1 expression affect METTL14 protein levels, m6 A modification and tumorigenesis. Collectively, our findings uncover an ubiquitination mechanism controlling METTL14 protein levels to fine-tune m6 A homeostasis. Finally, we present evidence that modulating STUB1 expression to degrade METTL14 could represent a promising therapeutic strategy against cancer.


Asunto(s)
Adenosina , Metiltransferasas , Adenosina/metabolismo , Metiltransferasas/genética , Homeostasis
3.
Chem Rev ; 123(6): 2737-2831, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36898130

RESUMEN

Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.

4.
Drug Resist Updat ; 73: 101057, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266355

RESUMEN

AIMS: Lung cancer is the leading cause of cancer mortality and lung adenocarcinoma (LUAD) accounts for more than half of all lung cancer cases. Tumor elimination is mostly hindered by drug resistance and the mechanisms remain to be explored in LUAD. METHODS: CRISPR screens in cell and murine models and single-cell RNA sequencing were conducted, which identified MAF bZIP transcription factor F (MAFF) as a critical factor regulating tumor growth and treatment resistance in LUAD. RNA and ChIP sequencing analyses were performed for transcriptional target expression and specific binding sites of MAFF. Functions of MAFF in inhibiting tumor growth and promoting cisplatin or irradiation efficacy were investigated using cellular and xenograft models. RESULTS: Patients with lung adenocarcinoma and reduced MAFF expression had worse clinical outcomes. MAFF inhibited tumor cell proliferation by regulating the expression of SLC7A11, CDK6, and CDKN2C, promoting ferroptosis and preventing cell cycle progression from G1 to S. MAFF also conferred tumor cells vulnerable to cisplatin-based or ionizing radiation treatments. MAFF reduction was a final event in the acquisition of cisplatin resistance of LUAD cells. The intracellular cAMP/PKA/CREB1 pathway upregulated MAFF in response to cisplatin-based or ionizing radiation treatments. CONCLUSIONS: MAFF suppresses tumor growth, and pharmacological agonists targeting MAFF may improve cisplatin or irradiation therapies for lung adenocarcinoma patients.


Asunto(s)
Adenocarcinoma del Pulmón , Ferroptosis , Neoplasias Pulmonares , Humanos , Animales , Ratones , Cisplatino/farmacología , Cisplatino/uso terapéutico , Ferroptosis/genética , Línea Celular Tumoral , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Proliferación Celular , Ciclo Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/uso terapéutico , Factor de Transcripción MafF
5.
Biochem Biophys Res Commun ; 706: 149747, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38479243

RESUMEN

Nobiletin is a natural flavonoid found in citrus fruits with beneficial effects, including anti-inflammatory, anti-cancer and anti-oxidation effects. The aim of this study was to investigate whether nobiletin improves mitochondrial function in porcine oocytes and examine the underlying mechanism. Oocytes enclosed by cumulus cells were cultured in TCM-199 for 44 h with 0.1% dimethyl sulfoxide (control), or supplemented with 5, 10, 25, and 50 µM of nobiletin (Nob5, Nob10, Nob25, and Nob50, respectively). Oocyte maturation rate was significantly enhanced in Nob10 (70.26 ± 0.45%) compared to the other groups (control: 60.12 ± 0.47%; Nob5: 59.44 ± 1.63%; Nob25: 63.15 ± 1.38%; Nob50: 46.57 ± 1.19%). The addition of nobiletin reduced the levels of reactive oxygen species and increased glutathione levels. Moreover, Nob10 promoted mitochondrial biogenesis by upregulating the protein levels of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α). This resulted in an increase in the number of active mitochondria, mitochondrial DNA copy number, mitochondrial membrane potential, and ATP production, thereby enhancing mitochondrial function. The protein level of p53 decreased, followed by the phosphorylation of B-cell lymphoma 2, suggesting a reduction in mitochondria-mediated apoptosis in the Nob10 group. Additionally, the release of cytochrome c from the mitochondria was significantly diminished along with a decrease in the protein expression of caspase 3. Thus, nobiletin has a great potential to promote the in vitro maturation of porcine oocytes by suppressing oxidative stress and promoting mitochondrial function through the upregulation of the SIRT1/PGC-1α signaling pathway.


Asunto(s)
Flavonas , Mitocondrias , Sirtuina 1 , Animales , Porcinos , Sirtuina 1/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Oocitos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
6.
Cryobiology ; 115: 104892, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593909

RESUMEN

Refreezing the remaining genetic resources after in vitro fertilization (IVF) can conserve genetic materials. However, the precise damage inflicted by repeated freezing and thawing on bovine sperm and its underlying mechanism remain largely unexplored. Thus, this study investigates the impact of repeated freeze-thaw cycles on sperm. Our findings indicate that such cycles significantly reduce sperm viability and motility. Furthermore, the integrity of the sperm plasma membrane and acrosome is compromised during this process, exacerbating the advanced apoptosis triggered by oxidative stress. Additionally, transmission electron microscopy exposed severe damage to the plasma membranes of both the sperm head and tail. Notably, the "9 + 2" structure of the tail was disrupted, along with a significant decrease in the level of the axonemal protein DNAH10, leading to reduced sperm motility. IVF outcomes revealed that repeated freeze-thaw cycles considerably impair sperm fertilization capability, ultimately reducing the blastocyst rate. In summary, our research demonstrates that repeated freeze-thaw cycles lead to a decline in sperm viability and motility, attributed to oxidative stress-induced apoptosis and DNAH10-related dynamic deficiency. As a result, the utility of semen is compromised after repeated freezing.


Asunto(s)
Apoptosis , Criopreservación , Fertilización In Vitro , Congelación , Estrés Oxidativo , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Masculino , Bovinos , Criopreservación/veterinaria , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides/fisiología , Fertilización In Vitro/veterinaria , Congelación/efectos adversos , Membrana Celular , Supervivencia Celular , Acrosoma
7.
Biochem Genet ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206423

RESUMEN

The toll-like receptor (TLR) family is an important class of proteins involved in the immune response. However, little is known about the association between TLRs and Esophageal squamous cell cancer (ESCC). We explored differentially expressed genes (DEGs) between ESCC and esophagus tissues in TCGA and GTEx database. By taking the intersection with TLR gene set and using univariate Cox analysis and multivariate Cox regression analysis to discriminate the hub genes, we created a TLR-prognostic model. Our model separated patients with ESCC into high- and low-risk score (RS) groups. Prognostic analysis was performed with Kaplan-Meier curves. The two groups were also compared regarding tumor immune microenvironment and drug sensitivity. Six hub genes (including CD36, LGR4, MAP2K3, NINJ1, PIK3R1, and TRAF3) were screened to construct a TLR-prognostic model. High-RS group had a worse survival (p < 0.01), lower immune checkpoint expression (p < 0.05), immune cell abundance (p < 0.05) and decreased sensitivity to Epirubicin (p < 0.001), 5-fluorouracil (p < 0.0001), Sorafenib (p < 0.01) and Oxaliplatin (p < 0.05). We constructed a TLR-based model, which could be used to assess the prognosis of patients with ESCC, provide new insights into drug treatment for ESCC patients and investigate the TME and drug response.

8.
Respir Res ; 24(1): 277, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957645

RESUMEN

Ferroptosis is a type of regulated cell death characterized by iron accumulation and lipid peroxidation. The molecular mechanisms underlying ferroptosis regulation in non-small cell lung cancer (NSCLC) are poorly understood. In this study, we found that protein kinase A (PKA) inhibition enhanced ferroptosis susceptibility in NSCLC cells, as evidenced by reduced cell viability and increased lipid peroxidation. We further identified cAMP-responsive element protein 1 (CREB1), a transcription factor and a substrate of PKA, as a key regulator of ferroptosis. Knockdown of CREB1 sensitized NSCLC cells to ferroptosis inducers (FINs) and abolished the effects of PKA inhibitor and agonist, revealing the pivotal role of CREB1 in ferroptosis regulation. Using a high-throughput screening approach and subsequent validation by chromatin immunoprecipitation (ChIP) and dual-luciferase assays, we discovered that CREB1 transcriptionally activated stearoyl-CoA desaturase (SCD), an enzyme that catalyzes the conversion of saturated fatty acids to monounsaturated fatty acids. SCD conferred ferroptosis resistance by decreasing the availability of polyunsaturated fatty acids for lipid peroxidation, and its overexpression rescued the effect of CREB1 knockdown on ferroptosis in vitro. Besides, CREB1 knockdown suppressed xenograft tumor growth in the presence of Imidazole Ketone Erastin (IKE), a potent FIN, and this effect was reversed by SCD. Finally, we showed that high expression of CREB1 was associated with poor prognosis in NSCLC patients from public datasets and our institution. Collectively, this study illustrates the effect of PKA/CREB1/SCD axis in regulating ferroptosis of NSCLC, targeting this pathway may provide new strategies for treating NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Ferroptosis/genética , Peroxidación de Lípido , Neoplasias Pulmonares/genética
9.
Pharmacol Res ; 194: 106819, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321467

RESUMEN

Lung cancer is the main reason for cancer-associated death globally, and lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Recently, AGRN is considered playing an vital role in the development of some cancers. However, the regulatory effects and mechanisms of AGRN in LUAD remain elusive. In this study, we clarified the significant upregulation of AGRN expression in LUAD by single-cell RNA sequencing combined with immunohistochemistry. Besides, we confirmed that LUAD patients with high AGRN expression are more susceptible to lymph node metastases and have a worse prognosis by a retrospective study of 120 LUAD patients. Next, we demonstrated that AGRN directly interact with NOTCH1, which results in the release of the intracellular structural domain of NOTCH1 and the subsequent activation of the NOTCH pathway. Moreover, we also found that AGRN promotes proliferation, migration, invasion, EMT and tumorigenesis of LUAD cells in vitro and in vivo, and that these effects are reversed by blocking the NOTCH pathway. Furthermore, we prepared several antibodies targeting AGRN, and clarify that Anti-AGRN antibody treatment could significantly inhibit proliferation and promote apoptosis of tumor cells. Our study highlights the important role and regulatory mechanism of AGRN in LUAD development and progression, and suggests that antibodies targeting AGRN have therapeutic potential for LUAD. We also provide theoretical and experimental evidence for further development of monoclonal antibodies targeting AGRN.


Asunto(s)
Adenocarcinoma del Pulmón , Agrina , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Estudios Retrospectivos , Transducción de Señal , Agrina/metabolismo , Receptor Notch1/metabolismo
10.
Phys Chem Chem Phys ; 25(12): 8631-8640, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36891910

RESUMEN

Piezoelectric materials have been reported to possess catalytic activity under mechanical excitation, such as by ultrasonic waves or collisions. Energy band theory (EBT) is often used to explain the piezocatalytic phenomenon caused by the strain-induced charge separation, but the correlation between the piezoelectric polarization and catalytic activity has still not been fully understood in early theoretical studies with the EBT model. To reveal the intrinsic connection between the piezoelectric feature and surface catalytic activity, in this work, we employ first-principles Density Functional Theory (DFT) to investigate the prototype piezocatalyst BaTiO3 (001) surface (BTO). Our simulation shows that the thickness of BTO has a significant impact on the band structure, polarization charge distribution and the surface work function of both positively and negatively polarized sides. As the driving force of piezocatalysis, the electrostatic potential difference (piezopotential) of the two sides shows strong a correlation with the band structure change under the applied strain, which determines the theoretical catalytic activity of BaTiO3 (001) for water splitting. Finally, we reveal the piezoelectric effects on the surface adsorption energy of H and OH species, which provide a new insight into the mechanism of piezocatalysis. Our work provides a new and in-depth physical insight into the fundamental mechanism of piezocatalysis, which may have important implications for the application of piezocatalysts in water treatment and renewable energy technologies.

11.
Phys Chem Chem Phys ; 25(20): 13913-13922, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37184027

RESUMEN

Electrocatalysts for the oxygen reduction reaction (ORR) are extremely crucial for advanced energy conversion technologies, such as fuel cell batteries. A promising ORR catalyst usually should have low overpotentials, rich catalytic sites and low cost. In the past decade, single-atom catalyst (SAC) TM-N4 (TM = Fe, Co, etc.) embedded graphene matrixes have been widely studied for their promising performance and low cost for ORR catalysis, but the effect of coordination on the ORR activity is not fully understood. In this work, we will employ density functional theory (DFT) calculations to systematically investigate the ORR activity of 40 different 3d transition metal single-atom catalysts (SACs) supported on nitrogen-doped graphene supports, ranging from vanadium to zinc. Five different nitrogen coordination configurations (TM-NxC4-x with x = 0, 1, 2, 3, and 4) were studied to reveal how C/N substitution affects the ORR activity. By looking at the stability, free energy diagram, overpotential, and scaling relationship, our calculation showed that partial C substitution can effectively improve the ORR performance of Mn, Co, Ni, and Zn-based SACs. The volcano plot obtained from the scaling relationship indicated that the substitution of N by C could distinctively affect the potential-limiting step in the ORR, which leads to the enhanced or weakened ORR performance. Density of states and d-band center analysis suggested that this coordination-tuned ORR activity can be explained by the shift of the d-band center due to the coordination effect. Finally, four candidates with optimal ORR activity and dynamic stability were proposed from the pool: NiC4, CoNC3, CrN4, and ZnN3C. Our work provides a feasible designing strategy to improve the ORR activity of graphene-based TM-N4 SACs by tuning the coordination environment, which may have potential implication in the high-performance fuel cell development.

12.
Langenbecks Arch Surg ; 408(1): 250, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37382724

RESUMEN

PURPOSE: There is little information regarding the overall survival (OS) predictive ability of the combination of tumor burden score (TBS), α-fetoprotein (AFP), and albumin-bilirubin (ALBI) grade for patients with hepatocellular carcinoma (HCC). Here, we aimed to develop a model including TBS, AFP, and ALBI grade to predict HCC patient OS following liver resection. METHODS: Patients (N = 1556) from six centers were randomly divided 1:1 into training and validation sets. The X-Tile software was used to determine the optimal cutoff values. The time-dependent area under the receiver operating characteristic curve (AUROC) was calculated to assess the prognostic ability of the different models. RESULTS: In the training set, tumor differentiation, TBS, AFP, ALBI grade, and Barcelona Clinic Liver Cancer (BCLC) stage were independently related to OS. According to the coefficient values of TBS, AFP, and ALBI grade, we developed the TBS-AFP-ALBI (TAA) score using a simplified point system (0, 2 for low/high TBS, 0, 1 for low/high AFP and 0,1 for ALBI grade 1/2). Patients were further divided into low TAA (TAA ≤ 1), medium TAA (TAA = 2-3), and high TAA (TAA= 4) groups. TAA scores (low: referent; medium, HR = 1.994, 95% CI = 1.492-2.666; high, HR = 2.413, 95% CI = 1.630-3.573) were independently associated with patient survival in the validation set. The TAA scores showed higher AUROCs than BCLC stage for the prediction of 1-, 3-, and 5-year OS in both the training and validation sets. CONCLUSION: TAA is a simple score that has better OS prediction performance than the BCLC stage in predicting OS for HCC patients after liver resection.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirugía , alfa-Fetoproteínas , Carga Tumoral , Neoplasias Hepáticas/cirugía , Albúminas , Bilirrubina
13.
World J Microbiol Biotechnol ; 40(2): 54, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147274

RESUMEN

Daqu is of great significance to the brewing process of Baijiu, and there are variations in the light-flavor Baijiu Daqu in different regions. However, few studies have been conducted on light-flavor Daqu from the north and south regions of China. In this study, the physicochemical indices, volatile flavor components, and microbial community structure of two types of Daqu from the north and south regions of China were comparatively analyzed. The study findings reveal that Daqu originating from the southern region of China (HB) exhibits superior moisture content, acidity, starch content, and saccharification power. In contrast, Daqu from the northern region of China (SX) displays higher fermentation, esterification, and liquefaction power. The analysis of the microbial community structure revealed that HB was dominated by Bacillus, Kroppenstedtia, Saccharomycopsis, and Thermoascus, while SX was dominated by Bacillus, Prevotella, and Saccharomycopsis. The analysis detected a total of 47 volatile components in both HB Daqu and SX Daqu. The volatile components of pyrazine were significantly more abundant in HB Daqu than in SX Daqu, while alcohol compounds were more prominent in SX Daqu than in HB Daqu. In addition, the RDA analysis established a correlation between dominant microorganisms and volatile components. Cyanobacteria, Fusobacteriota, Ascomycota, Blastocladiomycota, Basidiomycota, and Mucormyce exhibited positive correlations with a significant proportion of the key volatile compounds. This study establishes a scientific foundation for improving the quality of light-flavor Daqu liquor in different regions of China.


Asunto(s)
Bacillus , Microbiota , China , Esterificación , Etanol
14.
Cancer Immunol Immunother ; 71(7): 1733-1746, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34837101

RESUMEN

Metformin has been found to have inhibitory effects on a variety of tumors. However, its effects on non-small cell lung cancer (NSCLC) remain unclear. We demonstrated that metformin could inhibit the proliferation of A549 and H1299 cells. RNA transcriptome sequencing revealed that PDL1 was significantly downregulated in both cell types following treatment with metformin (P < 0.001). Jaspar analysis and chromatin immunoprecipitation showed that CEBPB could directly bind the promoter region of PDL1. Western blotting showed that protein expression of the isoforms CEBPB-LAP*, CEBPB-LAP, and CEBPB-LIP was significantly upregulated and the LIP/LAP ratio was increased. Gene chip analysis showed that PDL1 was significantly upregulated in A549-CEBPB-LAP cells and significantly downregulated in A549-CEBPB-LIP cells (P < 0.05) compared with CEBPB-NC cells. Dual-luciferase reporter gene assay showed that CEBPB-LAP overexpression could promote transcription of PDL1 and CEBPB-LIP overexpression could inhibit the process. Functional assays showed that the changes in CEBPB isoforms affected the function of NSCLC cells. Western blotting showed that metformin could regulate the function of NSCLC cells via AMPK-CEBPB-PDL1 signaling. Animal experiments showed that tumor growth was significantly inhibited by metformin, and atezolizumab and metformin had a synergistic effect on tumor growth. A total of 1247 patients were retrospectively analyzed, including 166 and 1081 patients in metformin and control groups, respectively. The positive rate of PDL1 was lower than that of the control group (HR = 0.338, 95% CI = 0.235-0.487; P < 0.001). In conclusion, metformin inhibited the proliferation of NSCLC cells and played an anti-tumor role in an AMPK-CEBPB-PDL1 signaling-dependent manner.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Metformina , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Estudios Retrospectivos , Transducción de Señal
15.
J Transl Med ; 20(1): 171, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410350

RESUMEN

OBJECTIVES: Platinum-based chemotherapies are currently the first-line treatment of non-small cell lung cancer. This study will improve our understanding of the causes of resistance to cisplatin, especially in lung adenocarcinoma (LUAD) and provide a reference for therapeutic decisions in clinical practice. METHODS: Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA) and Zhongshan hospital affiliated to Fudan University (zs-cohort) were used to identify the multi-omics differences related to platinum chemotherapy. Cisplatin-resistant mRNA and miRNA models were constructed by Logistic regression, classification and regression tree and C4.5 decision tree classification algorithm with previous feature selection performed via least absolute shrinkage and selection operator (LASSO). qRT-PCR and western-blotting of A549 and H358 cells, as well as single-cell Seq data of tumor samples were applied to verify the tendency of certain genes. RESULTS: 661 cell lines were divided into three groups according to the IC50 value of cisplatin, and the top 1/3 (220) with a small IC50 value were defined as the sensitive group while the last 1/3 (220) were enrolled in the insensitive group. TP53 was the most common mutation in the insensitive group, in contrast to TTN in the sensitive group. 1348 mRNA, 80 miRNA, and 15 metabolites were differentially expressed between 2 groups (P < 0.05). According to the LASSO penalized logistic modeling, 6 of the 1348 mRNAs, FOXA2, BATF3, SIX1, HOXA1, ZBTB38, IRF5, were selected as the associated features with cisplatin resistance and for the contribution of predictive mRNA model (all of adjusted P-values < 0.001). Three of 6 (BATF3, IRF5, ZBTB38) genes were finally verified in cell level and patients in zs-cohort. CONCLUSIONS: Somatic mutations, mRNA expressions, miRNA expressions, metabolites and methylation were related to the resistance of cisplatin. The models we created could help in the prediction of the reaction and prognosis of patients given platinum-based chemotherapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteínas de Homeodominio , Humanos , Factores Reguladores del Interferón , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Aprendizaje Automático , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/uso terapéutico
16.
Chem Rev ; 120(14): 6738-6782, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32597172

RESUMEN

There is an urgent global need for electrochemical energy storage that includes materials that can provide simultaneous high power and high energy density. One strategy to achieve this goal is with pseudocapacitive materials that take advantage of reversible surface or near-surface Faradaic reactions to store charge. This allows them to surpass the capacity limitations of electrical double-layer capacitors and the mass transfer limitations of batteries. The past decade has seen tremendous growth in the understanding of pseudocapacitance as well as materials that exhibit this phenomenon. The purpose of this Review is to examine the fundamental development of the concept of pseudocapacitance and how it came to prominence in electrochemical energy storage as well as to describe new classes of materials whose electrochemical energy storage behavior can be described as pseudocapacitive.

17.
Reprod Domest Anim ; 57(12): 1572-1583, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36001037

RESUMEN

Heat stress (HS) affects the development of porcine gametes and embryos negatively, induces the decrease of reproductive ability significantly, threatens global pig production. Ginsenoside Re (GRe), is a main bioactive component of ginseng, shows very specific anti-apoptotic, antioxidant and anti-inflammatory activities. To investigate the alleviating effect of GRe on the in vitro maturation of porcine oocyte under the HS, the polar body extrusion rate, intracellular levels of reactive oxygen species (ROS) and glutathione (GSH), ATP content, mitochondrial membrane potential (MMP) were assessed. For the current study, porcine cumulus-oocyte complexes (COCs) randomly divided into four groups: the control, GRe, HS and HS + GRe group. The results showed that HS inhibited the cumulus cell expansion and polar body extrusion rate, the levels of GSH and MMP, the ATP content, the gene expression of Nrf2 of porcine oocytes and the parthenogenetic activation (PA) embryo development competence, but GRe treatment could partly neutralize these adverse effects. Furthermore, HS increased the ROS formation and percentage of apoptosis, the gene expression of HSP90, CASP3 and CytoC of porcine oocytes, but GRe could weaken the effect on Cyto C and BAX expression induced by HS. Taken together, these results showed that the presence of GRe during in vitro maturation protects porcine oocytes from HS. These findings lay a foundation for GRe may be used as a potential protective drug to protect porcine oocytes against HS damage.


Asunto(s)
Trastornos de Estrés por Calor , Enfermedades de los Porcinos , Porcinos , Animales , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Especies Reactivas de Oxígeno/metabolismo , Oocitos/fisiología , Respuesta al Choque Térmico , Trastornos de Estrés por Calor/metabolismo , Trastornos de Estrés por Calor/veterinaria , Desarrollo Embrionario , Glutatión/metabolismo , Adenosina Trifosfato/metabolismo , Enfermedades de los Porcinos/metabolismo
18.
Molecules ; 27(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432212

RESUMEN

Tetrabromobisphenol (TBBPA) is the most widely used brominated flame retardant in the world and displays toxicity to humans and animals. However, few studies have focused on its impact on oocyte maturation. Here, TBBPA was added to the culture medium of bovine cumulus-oocyte complexes (COCs) to examine its effect on oocytes. We found that TBBPA exposure displayed an adverse influence on oocyte maturation and subsequent embryonic development. The results of this study showed that TBBPA exposure induced oocyte meiotic failure by disturbing the polar-body extrusion of oocytes and the expansion of cumulus cells. We further found that TBBPA exposure led to defective spindle assembly and chromosome alignment. Meanwhile, TBBPA induced oxidative stress and early apoptosis by mediating the expression of superoxide dismutase 2 (SOD2). TBBPA exposure also caused mitochondrial dysfunction, displaying a decrease in mitochondrial membrane potential, mitochondrial content, mtDNA copy number, and ATP levels, which are regulated by the expression of pyruvate dehydrogenase kinase 3 (PDK3). In addition, the developmental competence of oocytes and the quality of blastocysts were also reduced after TBBPA treatment. These results demonstrated that TBBPA exposure impaired oocyte maturation and developmental competence by disrupting both nuclear and cytoplasmic maturation of the oocyte, which might have been caused by oxidative stress induced by mitochondrial dysfunction.


Asunto(s)
Oocitos , Oogénesis , Humanos , Embarazo , Femenino , Bovinos , Animales , Oocitos/metabolismo , Células del Cúmulo/metabolismo , Desarrollo Embrionario , Mitocondrias/metabolismo
19.
J Transl Med ; 19(1): 124, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766047

RESUMEN

BACKGROUND: Tumor invasiveness reflects many biological changes associated with tumorigenesis, progression, metastasis, and drug resistance. Therefore, we performed a systematic assessment of invasiveness-related molecular features across multiple human cancers. MATERIALS AND METHODS: Multi-omics data, including gene expression, miRNA, DNA methylation, and somatic mutation, in approximately 10,000 patients across 30 cancer types from The Cancer Genome Atlas, Gene Expression Omnibus, PRECOG, and our institution were enrolled in this study. RESULTS: Based on a robust gene signature, we established an invasiveness score and found that the score was significantly associated with worse prognosis in almost all cancers. Then, we identified common invasiveness-associated dysregulated molecular features between high- and low-invasiveness score group across multiple cancers, as well as investigated their mutual interfering relationships thus determining whether the dysregulation of invasiveness-related genes was caused by abnormal promoter methylation or miRNA expression. We also analyzed the correlations between the drug sensitivity data from cancer cell lines and the expression level of 685 invasiveness-related genes differentially expressed in at least ten cancer types. An integrated analysis of the correlations among invasiveness-related genetic features and drug response were conducted in esophageal carcinoma patients to outline the complicated regulatory mechanism of tumor invasiveness status in multiple dimensions. Moreover, functional enrichment suggests the invasiveness score might serve as a predictive biomarker for cancer patients receiving immunotherapy. CONCLUSION: Our pan-cancer study provides a comprehensive atlas of tumor invasiveness and may guide more precise therapeutic strategies for tumor patients.


Asunto(s)
MicroARNs , Neoplasias , Metilación de ADN/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Neoplasias/genética , Pronóstico
20.
J Transl Med ; 19(1): 219, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030708

RESUMEN

BACKGROUND: Generally, cancer cells undergo metabolic reprogramming to adapt to energetic and biosynthetic requirements that support their uncontrolled proliferation. However, the mutual relationship between two critical metabolic pathways, glycolysis and oxidative phosphorylation (OXPHOS), remains poorly defined. METHODS: We developed a "double-score" system to quantify glycolysis and OXPHOS in 9668 patients across 33 tumor types from The Cancer Genome Atlas and classified them into four metabolic subtypes. Multi-omics bioinformatical analyses was conducted to detect metabolism-related molecular features. RESULTS: Compared with patients with low glycolysis and high OXPHOS (LGHO), those with high glycolysis and low OXPHOS (HGLO) were consistently associated with worse prognosis. We identified common dysregulated molecular features between different metabolic subgroups across multiple cancers, including gene, miRNA, transcription factor, methylation, and somatic alteration, as well as investigated their mutual interfering relationships. CONCLUSION: Overall, this work provides a comprehensive atlas of metabolic heterogeneity on a pan-cancer scale and identified several potential drivers of metabolic rewiring, suggesting corresponding prognostic and therapeutic utility.


Asunto(s)
MicroARNs , Neoplasias , Biomarcadores , Glucólisis , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosforilación Oxidativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA