Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38392383

RESUMEN

Analyzing and characterizing the differences between networks is a fundamental and challenging problem in network science. Most previous network comparison methods that rely on topological properties have been restricted to measuring differences between two undirected networks. However, many networks, such as biological networks, social networks, and transportation networks, exhibit inherent directionality and higher-order attributes that should not be ignored when comparing networks. Therefore, we propose a motif-based directed network comparison method that captures local, global, and higher-order differences between two directed networks. Specifically, we first construct a motif distribution vector for each node, which captures the information of a node's involvement in different directed motifs. Then, the dissimilarity between two directed networks is defined on the basis of a matrix, which is composed of the motif distribution vector of every node and the Jensen-Shannon divergence. The performance of our method is evaluated via the comparison of six real directed networks with their null models, as well as their perturbed networks based on edge perturbation. Our method is superior to the state-of-the-art baselines and is robust with different parameter settings.

2.
Chaos Solitons Fractals ; 108: 196-204, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32288352

RESUMEN

Research on the interplay between the dynamics on the network and the dynamics of the network has attracted much attention in recent years. In this work, we propose an information-driven adaptive model, where disease and disease information can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from further spreading. Simulation results and numerical analyses based on the pairwise approach indicate that the information-driven adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the epidemic prevalence at the final state significantly. In addition, the disease spreading and information diffusion pattern on the lattice as well as on a real-world network give visual representations about how the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore, we perform the local bifurcation analysis on four types of dynamical regions, including healthy, a continuous dynamic behavior, bistable and endemic, to understand the evolution of the observed dynamical behaviors. This work may shed some lights on understanding how information affects human activities on responding to epidemic spreading.

3.
Appl Math Comput ; 332: 437-448, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32287501

RESUMEN

The interaction between disease and disease information on complex networks has facilitated an interdisciplinary research area. When a disease begins to spread in the population, the corresponding information would also be transmitted among individuals, which in turn influence the spreading pattern of the disease. In this paper, firstly, we analyze the propagation of two representative diseases (H7N9 and Dengue fever) in the real-world population and their corresponding information on Internet, suggesting the high correlation of the two-type dynamical processes. Secondly, inspired by empirical analyses, we propose a nonlinear model to further interpret the coupling effect based on the SIS (Susceptible-Infected-Susceptible) model. Both simulation results and theoretical analysis show that a high prevalence of epidemic will lead to a slow information decay, consequently resulting in a high infected level, which shall in turn prevent the epidemic spreading. Finally, further theoretical analysis demonstrates that a multi-outbreak phenomenon emerges via the effect of coupling dynamics, which finds good agreement with empirical results. This work may shed light on the in-depth understanding of the interplay between the dynamics of epidemic spreading and information diffusion.

4.
iScience ; 25(6): 104446, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35677641

RESUMEN

Quantifying structural dissimilarities between networks is a fundamental and challenging problem in network science. Previous network comparison methods are based on the structural features, such as the length of shortest path and degree, which only contain part of the topological information. Therefore, we propose an efficient network comparison method based on network embedding, which considers the global structural information. In detail, we first construct a distance matrix for each network based on the distances between node embedding vectors derived from DeepWalk. Then, we define the dissimilarity between two networks based on Jensen-Shannon divergence of the distance distributions. Experiments on both synthetic and empirical networks show that our method outperforms the baseline methods and can distinguish networks well. In addition, we show that our method can capture network properties, e.g., average shortest path length and link density. Moreover, the experiment of modularity further implies the functionality of our method.

5.
Sci Rep ; 9(1): 6798, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043632

RESUMEN

Progress has been made in understanding how temporal network features affect the percentage of nodes reached by an information diffusion process. In this work, we explore further: which node pairs are likely to contribute to the actual diffusion of information, i.e., appear in a diffusion trajectory? How is this likelihood related to the local temporal connection features of the node pair? Such deep understanding of the role of node pairs is crucial to tackle challenging optimization problems such as which kind of node pairs or temporal contacts should be stimulated in order to maximize the prevalence of information spreading. We start by using Susceptible-Infected (SI) model, in which an infected (information possessing) node could spread the information to a susceptible node with a given infection probability ß whenever a contact happens between the two nodes, as the information diffusion process. We consider a large number of real-world temporal networks. First, we propose the construction of an information diffusion backbone GB(ß) for a SI spreading process with an infection probability ß on a temporal network. The backbone is a weighted network where the weight of each node pair indicates how likely the node pair appears in a diffusion trajectory starting from an arbitrary node. Second, we investigate the relation between the backbones with different infection probabilities on a temporal network. We find that the backbone topology obtained for low and high infection probabilities approach the backbone GB(ß â†’ 0) and GB(ß = 1), respectively. The backbone GB(ß â†’ 0) equals the integrated weighted network, where the weight of a node pair counts the total number of contacts in between. Finally, we explore node pairs with what local connection features tend to appear in GB(ß = 1), thus actually contribute to the global information diffusion. We discover that a local connection feature among many other features we proposed, could well identify the (high-weight) links in GB(ß = 1). This local feature encodes the time that each contact occurs, pointing out the importance of temporal features in determining the role of node pairs in a dynamic process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA