Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2728: 173-180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38019401

RESUMEN

A major challenge in developing potential treatments for pregnancy complications is minimizing adverse effects to the fetus and mother. Placenta-targeted drug delivery could reduce the risks of drug treatments in pregnancy by targeting tissue where most pregnancy complications originate and decreasing dosages. We previously developed a tool for the targeted delivery of drug-carrying nanoparticles to the placenta using a synthetic placental chondroitin sulfate A-binding peptide (plCSA-BP) derived from the malarial protein VAR2CSA, which binds a distinct type of chondroitin sulfate A (CSA) exclusively expressed by placental trophoblasts. Liposomes are a type of nanoparticle already approved for use in humans by the Food and Drug Administration (FDA) and used successfully for the treatment of a wide range of diseases. Here, we present a detailed method to create plCSA-BP-decorated liposomes that can be used to deliver drugs specifically to placental trophoblasts. Liposomes are first generated by the standard film method and then conjugated to plCSA-BPs using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysulfosuccinimide (EDC/NHS) bioconjugate technique. This protocol may facilitate bench-to-bedside translation of drug discovery for the treatment of pregnancy disorders by reducing risks of side effects, and enabling rapid and scalable production.


Asunto(s)
Liposomas , Complicaciones del Embarazo , Embarazo , Estados Unidos , Humanos , Femenino , Sulfatos de Condroitina , Trofoblastos , Placenta
2.
Cell Rep ; 43(4): 114086, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38598335

RESUMEN

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but only works in a subset of patients due to the insufficient infiltration, persistent exhaustion, and inactivation of T cells within a tumor. Herein, we develop an engineered probiotic (interleukin [IL]-12 nanoparticle Escherichia coli Nissle 1917 [INP-EcN]) acting as a living drug factory to biosynthesize anti-PD-1 and release IL-12 for initiating systemic antitumor immunity through T cell cascade regulation. Mechanistically, INP-EcN not only continuously biosynthesizes anti-PD-1 for relieving immunosuppression but also effectively cascade promote T cell activation, proliferation, and infiltration via responsive release of IL-12, thus reaching a sufficient activation threshold to ICB. Tumor targeting and colonization of INP-EcNs dramatically increase local drug accumulations, significantly inhibiting tumor growth and metastasis compared to commercial inhibitors. Furthermore, immune profiling reveals that anti-PD-1/IL-12 efficiently cascade promote antitumor effects in a CD8+ T cell-dependent manner, clarifying the immune interaction of ICB and cytokine activation. Ultimately, such engineered probiotics achieve a potential paradigm shift from T cell exhaustion to activation and show considerable promise for antitumor bio-immunotherapy.


Asunto(s)
Interleucina-12 , Probióticos , Receptor de Muerte Celular Programada 1 , Animales , Interleucina-12/metabolismo , Probióticos/farmacología , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Humanos , Ratones Endogámicos C57BL , Línea Celular Tumoral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Escherichia coli/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Nanopartículas , Femenino , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología
3.
Chin Med J (Engl) ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420748

RESUMEN

BACKGROUND: P16 inactivation is frequently accompanied by telomerase reverse transcriptase (TERT) amplification in human cancer genomes. P16 inactivation by DNA methylation often occurs automatically during immortalization of normal cells by TERT. However, direct evidence remains to be obtained to support the causal effect of epigenetic changes, such as P16 methylation, on cancer development. This study aimed to provide experimental evidence that P16 methylation directly drives cancer development. METHODS: A zinc finger protein-based P16-specific DNA methyltransferase (P16-Dnmt) vector containing a "Tet-On" switch was used to induce extensive methylation of P16 CpG islands in normal human fibroblast CCD-18Co cells. Battery assays were used to evaluate cell immortalization and transformation throughout their lifespan. Cell subcloning and DNA barcoding were used to track the diversity of cell evolution. RESULTS: Leaking P16-Dnmt expression (without doxycycline-induction) could specifically inactivate P16 expression by DNA methylation. P16 methylation only promoted proliferation and prolonged lifespan but did not induce immortalization of CCD-18Co cells. Notably, cell immortalization, loss of contact inhibition, and anchorage-independent growth were always prevalent in P16-Dnmt&TERT cells, indicating cell transformation. In contrast, almost all TERT cells died in the replicative crisis. Only a few TERT cells recovered from the crisis, in which spontaneous P16 inactivation by DNA methylation occurred. Furthermore, the subclone formation capacity of P16-Dnmt&TERT cells was two-fold that of TERT cells. DNA barcoding analysis showed that the diversity of the P16-Dnmt&TERT cell population was much greater than that of the TERT cell population. CONCLUSION: P16 methylation drives TERT-mediated immortalization and transformation of normal human cells that may contribute to cancer development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA