Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(10): e1011742, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871014

RESUMEN

Viral infection triggers the activation of transcription factor IRF3, and its activity is precisely regulated for robust antiviral immune response and effective pathogen clearance. However, how full activation of IRF3 is achieved has not been well defined. Herein, we identified BLK as a key kinase that positively modulates IRF3-dependent signaling cascades and executes a pre-eminent antiviral effect. BLK deficiency attenuates RNA or DNA virus-induced ISRE activation, interferon production and the cellular antiviral response in human and murine cells, whereas overexpression of BLK has the opposite effects. BLK-deficient mice exhibit lower serum cytokine levels and higher lethality after VSV infection. Moreover, BLK deficiency impairs the secretion of downstream antiviral cytokines and promotes Senecavirus A (SVA) proliferation, thereby supporting SVA-induced oncolysis in an in vivo xenograft tumor model. Mechanistically, viral infection triggers BLK autophosphorylation at tyrosine 309. Subsequently, activated BLK directly binds and phosphorylates IRF3 at tyrosine 107, which further promotes TBK1-induced IRF3 S386 and S396 phosphorylation, facilitating sufficient IRF3 activation and downstream antiviral response. Collectively, our findings suggest that targeting BLK enhances viral clearance via specifically regulating IRF3 phosphorylation by a previously undefined mechanism.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Virosis , Humanos , Animales , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factor 3 Regulador del Interferón/metabolismo , Procesamiento Proteico-Postraduccional , Citocinas/metabolismo , Inmunidad Innata , Familia-src Quinasas/metabolismo
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 506-511, 2024 May 15.
Artículo en Zh | MEDLINE | ID: mdl-38802912

RESUMEN

OBJECTIVES: To summarize the clinical characteristics and genetic variations in children with cystic fibrosis (CF) primarily presenting with pseudo-Bartter syndrome (CF-PBS), with the aim to enhance understanding of this disorder. METHODS: A retrospective analysis was performed on the clinical data of three children who were diagnosed with CF-PBS in Hunan Children's Hospital from January 2018 to August 2023, and a literature review was performed. RESULTS: All three children had the onset of the disease in infancy. Tests after admission showed hyponatremia, hypokalemia, hypochloremia, and metabolic alkalosis, and genetic testing showed the presence of compound heterozygous mutation in the CFTR gene. All three children were diagnosed with CF. Literature review obtained 33 Chinese children with CF-PBS, with an age of onset of 1-36 months and an age of diagnosis of 3-144 months. Among these children, there were 29 children with recurrent respiratory infection or persistent pneumonia (88%), 26 with malnutrition (79%), 23 with developmental retardation (70%), and 18 with pancreatitis or extrapancreatic insufficiency (55%). Genetic testing showed that c.2909G>A was the most common mutation site of the CFTR gene, with a frequency of allelic variation of 23% (15/66). CONCLUSIONS: CF may have no typical respiratory symptoms in the early stage. The possibility of CF-PBS should be considered for infants with recurrent hyponatremia, hypokalemia, hypochloremia, and metabolic alkalosis, especially those with malnutrition and developmental retardation. CFTR genetic testing should be performed as soon as possible to help with the diagnosis of CF.


Asunto(s)
Síndrome de Bartter , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Mutación , Humanos , Fibrosis Quística/genética , Fibrosis Quística/complicaciones , Masculino , Femenino , Lactante , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Síndrome de Bartter/genética , Síndrome de Bartter/diagnóstico , Síndrome de Bartter/complicaciones , Preescolar , Niño , Estudios Retrospectivos
3.
Nat Immunol ; 9(5): 533-41, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18362886

RESUMEN

Despite rapid progress in elucidating the molecular mechanisms of activation of the kinase IKK, the processes that regulate IKK deactivation are still unknown. Here we demonstrate that CUE domain-containing 2 (CUEDC2) interacted with IKKalpha and IKKbeta and repressed activation of the transcription factor NF-kappaB by decreasing phosphorylation and activation of IKK. Notably, CUEDC2 also interacted with GADD34, a regulatory subunit of protein phosphatase 1 (PP1). We found that IKK, CUEDC2 and PP1 existed in a complex and that IKK was released from the complex in response to inflammatory stimuli such as tumor necrosis factor. CUEDC2 deactivated IKK by recruiting PP1 to the complex. Therefore, CUEDC2 acts as an adaptor protein to target IKK for dephosphorylation and inactivation by recruiting PP1.


Asunto(s)
Proteínas Portadoras/metabolismo , Quinasa I-kappa B/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Represoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Proteínas Portadoras/inmunología , Dominio Catalítico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Femenino , Humanos , Quinasa I-kappa B/química , Inflamación/inmunología , Interleucina-6/biosíntesis , Interleucina-6/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación , Unión Proteica , Proteínas Represoras/inmunología , Regulación hacia Arriba
4.
Exp Lung Res ; 46(9): 321-331, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32820688

RESUMEN

BACKGROUND: Asthma is one of the most frequent and serious diseases worldwide. Inflammation has been reported to correlate with airway remodeling, which is critical for the progression of asthma. Better understanding of novel molecules modulating asthma and the underlying mechanism will benefit explorations of new treatments. Method: To explore the role of miR-200a and miR-200b in asthma, miR-200a mimics/inhibitor and miR-200b mimics/inhibitor were employed in A549 cells, respectively. Expression levels of inflammatory cytokines, including TNF-α, IL-4, IL-5, IL-13 and IL-1ß, were measured by quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). A dual luciferase reporter assay was performed to identify whether miR-200a/200b directly bound to Orosomucoid 1-like 3 (ORMDL3). ERK, p-ERK and MMP-9, involved in downstream pathways of ORMDL3, were detected using qRT-PCR and western blotting. Results: MiR-200a/200b silencing significantly increased the expression of inflammatory cytokines, including TNF-α, IL-4, IL-5, IL-13 and IL-1ß, in A549 cells. ORMDL3 was the target gene of miR-200a/200b, with high expression levels in miR-200a inhibitor and miR-200b inhibitor groups. MiR-200a and miR-200b played synergistic roles in the regulation of the inflammatory effect in A549 cells. Expression levels of p-ERK and MMP-9 were significantly increased in miR-200a inhibitor and miR-200b inhibitor groups and were rescued by ERK inhibitor and MMP-9 inhibitor, respectively. Conclusion: These findings suggest that miR-200a and miR-200b are required to regulate asthma inflammation. Reduction in miR-200a/200b promotes the development of asthma inflammation by targeting ORMDL3 to activate the ERK/MMP-9 pathway. Therefore, elevating miR-200a and miR-200b and decreasing ORMDL3 might be potential strategies for inhibition of the asthma process.


Asunto(s)
Inflamación/genética , Sistema de Señalización de MAP Quinasas/genética , Metaloproteinasa 9 de la Matriz/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Transducción de Señal/genética , Células A549 , Remodelación de las Vías Aéreas (Respiratorias)/genética , Asma/genética , Línea Celular Tumoral , Citocinas/genética , Expresión Génica/genética , Humanos
5.
Sheng Li Xue Bao ; 72(2): 167-174, 2020 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-32328610

RESUMEN

Humans with chronic psychological stress are prone to develop multiple disorders of body function including impairment of immune system. Chronic psychological stress has been reported to have negative effects on body immune system. However, the underlying mechanisms have not been clearly demonstrated. All immune cells are derived from hematopoietic stem cells (HSC) in the bone marrow, including myeloid cells which comprise the innate immunity as a pivotal component. In this study, to explore the effects of chronic psychological stress on HSC and myeloid cells, different repeated restraint sessions were applied, including long-term mild restraint in which mice were individually subjected to a 2 h restraint session twice daily (morning and afternoon/between 9:00 and 17:00) for 4 weeks, and short-term vigorous restraint in which mice were individually subjected to a 16 h restraint session (from 17:00 to 9:00 next day) for 5 days. At the end of restraint, mice were sacrificed and the total cell numbers in the bone marrow and peripheral blood were measured by cell counting. The proportions and absolute numbers of HSC (Lin-CD117+Sca1+CD150+CD48-) and myeloid cells (CD11b+Ly6C+) were detected by fluorescence activated cell sorting (FACS) analysis. Proliferation of HSC was measured by BrdU incorporation assay. The results indicated that the absolute number of HSC was increased upon long-term mild restraint, but was decreased upon short-term vigorous restraint with impaired proliferation. Both long-term mild restraint and short-term vigorous restraint led to the accumulation of CD11b+Ly6C+ cells in the bone marrow as well as in the peripheral blood, as indicated by the absolute cell numbers. Taken together, long-term chronic stress led to increased ratio and absolute number of HSC in mice, while short-term stress had opposite effects, which suggests that stress-induced accumulation of CD11b+Ly6C+ myeloid cells might not result from increased number of HSC.


Asunto(s)
Proliferación Celular , Células Madre Hematopoyéticas/citología , Restricción Física , Estrés Psicológico , Animales , Antígenos Ly/metabolismo , Células de la Médula Ósea/citología , Antígeno CD11b/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Mol Pain ; 14: 1744806918785686, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29902945

RESUMEN

The medial prefrontal cortex is involved in the process of sensory discrimination. In this study, we examined the local field potential activity response to the different stages of pain in the prelimbic cortex (PrL) which is a sub-region of the medial prefrontal cortex. Recent studies revealed extensive information about neural oscillations, but there is limited information on the local field potential profiles for acute or chronic pain, particularly in freely moving animals. This study showed that acute mechanical pain increases alpha oscillation and decreases beta and gamma oscillations before spared nerve injury surgery. Delta oscillation was decreased by chronic pain and gamma oscillation varied with time. However, acute mechanical pain stimulus had no effects on local field potential in rats under mechanical allodynia. Together, our findings provide novel insights into the role of medial prefrontal cortex local field potential activity response to pain stimulus.


Asunto(s)
Potenciales de Acción/fisiología , Dolor Agudo/fisiopatología , Dolor Crónico/fisiopatología , Corteza Prefrontal/fisiopatología , Animales , Masculino , Ratas Sprague-Dawley
7.
J Cell Biol ; 223(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38078859

RESUMEN

TLR/IL-1R signaling plays a critical role in sensing various harmful foreign pathogens and mounting efficient innate and adaptive immune responses, and it is tightly controlled by intracellular regulators at multiple levels. In particular, TOLLIP forms a constitutive complex with IRAK1 and sequesters it in the cytosol to maintain the kinase in an inactive conformation under unstimulated conditions. However, the underlying mechanisms by which IRAK1 dissociates from TOLLIP to activate TLR/IL-1R signaling remain obscure. Herein, we show that BLK positively regulates TLR/IL-1R-mediated inflammatory response. BLK-deficient mice produce less inflammatory cytokines and are more resistant to death upon IL-1ß challenge. Mechanistically, BLK is preassociated with IL1R1 and IL1RAcP in resting cells. IL-1ß stimulation induces heterodimerization of IL1R1 and IL1RAcP, which further triggers BLK autophosphorylation at Y309. Activated BLK directly phosphorylates TOLLIP at Y76/86/152 and further promotes TOLLIP dissociation from IRAK1, thereby facilitating TLR/IL-1R-mediated signal transduction. Overall, these findings highlight the importance of BLK as an active regulatory component in TLR/IL-1R signaling.


Asunto(s)
Citocinas , Quinasas Asociadas a Receptores de Interleucina-1 , Transducción de Señal , Familia-src Quinasas , Animales , Ratones , Citocinas/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Fosforilación , Familia-src Quinasas/metabolismo
8.
Dev Dyn ; 240(1): 65-74, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21089075

RESUMEN

Mesenchymal stem cells (MSCs) represent powerful tools for regenerative medicine for their differentiation and migration capacity. However, ontogeny and migration of MSCs in mammalian mid-gestation conceptus is poorly understood. We identified canonical MSCs in the mouse embryonic day (E) 11.5 dorsal aorta (DA). They possessed homogenous immunophenotype (CD45(-)CD31(-)Flk-1(-)CD44(+)CD29(+)), expressed perivascular markers (α-SMA(+)NG2(+)PDGFRß(+)PDGFRα(+)), and had tri-lineage differentiation potential (osteoblasts, adipocytes, and chondrocytes). Of interest, MSCs were also detected in E12.5-E13.5 embryonic circulation, 24 hr later than in DA, suggesting migration like hematopoietic stem cells. Functionally, E12.5 embryonic blood could trigger efficient migration of DA-MSCs through platelet-derived growth factor (PDGF) receptor-, transforming growth factor-beta receptor-, but not basic fibroblast growth factor receptor-mediated signaling. Moreover, downstream JNK and AKT signaling pathway played important roles in embryonic blood- or PDGF-mediated migration of DA-derived MSCs. Taken together, these results revealed that clonal MSCs developed in the mouse DA. More importantly, the embryonic circulation, in addition to its conventional transporting roles, could modulate migration of MSC during early embryogenesis.


Asunto(s)
Aorta/embriología , Movimiento Celular/fisiología , Embrión de Mamíferos/irrigación sanguínea , Células Madre Mesenquimatosas/fisiología , Circulación Placentaria/fisiología , Animales , Aorta/citología , Aorta/fisiología , Diferenciación Celular , Linaje de la Célula/inmunología , Linaje de la Célula/fisiología , Células Cultivadas , Embrión de Mamíferos/citología , Femenino , Inmunofenotipificación , Ratones , Ratones Endogámicos C57BL , Embarazo , Células Madre/fisiología
9.
Autoimmunity ; 54(7): 439-449, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34448644

RESUMEN

Asthma is a common respiratory disease which is characterized by persistent airway inflammation. Abnormal expression of long non-coding RNAs (lncRNAs) is observed in asthma. However, whether lncRNA nuclear-enriched abundant transcript 1 (NEAT1) regulates asthmatic inflammation and its mechanism still needs to be further investigated. The expression levels of inflammatory factors (tumour necrosis factor (TNF)-α, interleukin (IL)-4, IL-13, and IL-10) were detected using reverse transcription quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). MTT and flow cytometry assays were employed to determine cell proliferation and apoptosis, respectively. Dual luciferase reporter assay was performed to verify the relationship between miR-200a/b and MMP-16 or NEAT1. NEAT1 silencing markedly reduced TNF-α, IL-4, and IL-13 levels, while elevated IL-10 expression, suppressed cell proliferation, and promoted cell apoptosis. However, NEAT1 overexpression elicited the opposite effects on cell proliferation and inflammation cytokines secretion. What is more, NEAT1 negatively regulated miR-200a/b expression, and MMP16 was a target gene of miR-200a/b. miR-200a/b overexpression suppressed inflammation, cell proliferation, and enhanced cell apoptosis through regulation of MMP16. Moreover, MMP-16 overexpression or miR-200a/b inhibition abolished the regulatory effect of sh-NEAT1 on cell inflammation and apoptosis in BEAS-2B cells. NEAT1 acted as the role of sponge for miR-200a/b to regulate MMP-16 expression, thereby promoting asthma progression, suggesting that NEAT1 might have great potential as therapeutic target for asthma.


Asunto(s)
Asma , Metaloproteinasa 16 de la Matriz , MicroARNs , ARN Largo no Codificante , Apoptosis/genética , Asma/genética , Asma/metabolismo , Proliferación Celular , Humanos , Inflamación/genética , Inflamación/metabolismo , Metaloproteinasa 16 de la Matriz/genética , Metaloproteinasa 16 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
Nat Commun ; 12(1): 897, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563974

RESUMEN

The dynamics, duration, and nature of immunity produced during SARS-CoV-2 infection are still unclear. Here, we longitudinally measured virus-neutralising antibody, specific antibodies against the spike (S) protein, receptor-binding domain (RBD), and the nucleoprotein (N) of SARS-CoV-2, as well as T cell responses, in 25 SARS-CoV-2-infected patients up to 121 days post-symptom onset (PSO). All patients seroconvert for IgG against N, S, or RBD, as well as IgM against RBD, and produce neutralising antibodies (NAb) by 14 days PSO, with the peak levels attained by 15-30 days PSO. Anti-SARS-CoV-2 IgG and NAb remain detectable and relatively stable 3-4 months PSO, whereas IgM antibody rapidly decay. Approximately 65% of patients have detectable SARS-CoV-2-specific CD4+ or CD8+ T cell responses 3-4 months PSO. Our results thus provide critical evidence that IgG, NAb, and T cell responses persist in the majority of patients for at least 3-4 months after infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/sangre , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Memoria Inmunológica , Interferón gamma/metabolismo , Cinética , Antígenos Comunes de Leucocito/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , Receptores CCR7/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA