Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(27): e2115939119, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35763578

RESUMEN

Positive magnetoresistance (PMR) and negative magnetoresistance (NMR) describe two opposite responses of resistance induced by a magnetic field. Materials with giant PMR are usually distinct from those with giant NMR due to different physical natures. Here, we report the unusual photomagnetoresistance in the van der Waals heterojunctions of WSe2/quasi-two-dimensional electron gas, showing the coexistence of giant PMR and giant NMR. The PMR and NMR reach 1,007.5% at -9 T and -93.5% at 2.2 T in a single device, respectively. The magnetoresistance spans over two orders of magnitude on inversion of field direction, implying a giant unidirectional magnetoresistance (UMR). By adjusting the thickness of the WSe2 layer, we achieve the maxima of PMR and NMR, which are 4,900,000% and -99.8%, respectively. The unique magnetooptical transport shows the unity of giant UMR, PMR, and NMR, referred to as giant bipolar unidirectional photomagnetoresistance. These features originate from strong out-of-plane spin splitting, magnetic field-enhanced recombination of photocarriers, and the Zeeman effect through our experimental and theoretical investigations. This work offers directions for high-performance light-tunable spintronic devices.NMR).

2.
Proc Natl Acad Sci U S A ; 119(34): e2204256119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35972965

RESUMEN

Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Secuencia Conservada , Cricetinae , Microscopía por Crioelectrón , Epítopos/inmunología , Humanos , Ratones , Pruebas de Neutralización , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
3.
Nanotechnology ; 35(18)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38271722

RESUMEN

The lack of low-cost methods to synthesize large-area graphene-based materials is still an important factor that limits the practical application of graphene devices. Herein, we present a facile method for producing large-area graphene oxide-metal (GO-M) films, which are size controllable and transferable. The sensor constructed using the GO-M film exhibited humidity sensitivity while being unaffected by pressure. The relationship between the sensor's resistance and relative humidity followed an exponential trend. The GO-Mg sensor was the most sensitive among all the tested sensors. The facile synthesis of GO-M films will accelerate the widespread utilization of graphene-based materials.

5.
Int Wound J ; 21(4): e14512, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38069524

RESUMEN

Knee osteoarthritis (KOA) is not merely a medical condition-it is a prevalent and incapacitating ailment that significantly affects the quality of life for millions worldwide, especially as they age. The incidence of KOA increases year by year with increasing age. This study evaluated the therapeutic efficacy of combining arthroscopy with sodium hyaluronate (SH) in the treatment of wound healing of knee osteoarthritis (KOA) in elderly patients, with a focus on wound healing and overall joint function restoration. Randomized controlled trials (RCTs) evaluating the combination of arthroscopy and SH in geriatric KOA patients were identified through a systematic search of the scientific literature utilizing multiple databases and predefined search criteria. Ultimately, twelve investigations were included in the meta-analysis. Using Stata 15.1 software, data extraction and analysis were conducted using both fixed- and random-effects models, and a sensitivity analysis was conducted to assure the validity of the findings. Compared with arthroscopy alone, the combination of arthroscopy and SH significantly improved the efficiency rate, pain management (as measured by the Visual Analogue Scale), knee function (as measured by the Lysholm Knee Scoring Scale) and decreased levels of the pro-inflammatory cytokines IL-1 and IL-6. The meta-analysis revealed minimal heterogeneity between studies, and the sensitivity analysis validated the results' reliability. The incorporation of SH into arthroscopic procedures for elderly patients with KOA provides significant therapeutic benefits, including improved wound healing, reduced inflammation and enhanced joint function overall. These results support the use of this combined approach in the management of KOA in the elderly population and emphasize the need for additional research to optimize treatment protocols and comprehend long-term outcomes.


Asunto(s)
Osteoartritis de la Rodilla , Anciano , Humanos , Artroscopía/métodos , Ácido Hialurónico/uso terapéutico , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/cirugía , Manejo del Dolor/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Cicatrización de Heridas
6.
Beilstein J Org Chem ; 20: 280-286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379732

RESUMEN

A simple and efficient method for the synthesis of spiropyridazine-benzosultams has been developed by means of [4 + 2] annulation reaction of 3-substituted benzoisothiazole 1,1-dioxides with 1,2-diaza-1,3-dienes. This approach displays advantages such as mild reaction conditions, wide substrate range tolerance, simple operation, compatibility with gram-scale preparation.

7.
Phys Rev Lett ; 130(19): 196801, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243636

RESUMEN

The switchable electric polarization is usually achieved in ferroelectric materials with noncentrosymmetric structures, which opens exciting opportunities for information storage and neuromorphic computing. In another polar system of p-n junction, there exists the electric polarization at the interface due to the Fermi level misalignment. However, the resultant built-in electric field is unavailable to manipulate, thus attracting less attention for memory devices. Here, we report the interfacial polarization hysteresis (IPH) in the vertical sidewall van der Waals heterojunctions of black phosphorus and quasi-two-dimensional electron gas on SrTiO_{3}. A nonvolatile switching of electric polarization can be achieved by reconstructing the space charge region (SCR) with long-lifetime nonequilibrium carriers. The resulting electric-field controllable IPH is experimentally verified by electric hysteresis, polarization oscillation, and pyroelectric effect. Further studies confirm the transition temperature of 340 K, beyond which the IPH vanishes. The second transition is revealed with the temperature dropping below 230 K, corresponding to the sharp improvement of IPH and the freezing of SCR reconstruction. This work offers new possibilities for exploring the memory phenomena in nonferroelectric p-n heterojunctions.

8.
Chemistry ; 29(38): e202300598, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37062699

RESUMEN

Multifunctional materials with working temperatures near room temperature are crucial for practical applications. Until now, it is still a great challenge to obtain such materials. In this paper, a complex of (C5 NH13 Cl)2 MnBr4 (1) with a structural phase transition near room temperature is reported. The phase transition induces switchable magnetic properties, dielectric anomalies and luminescent response over the same range of temperatures. It is the first time the synergetic effect of magnetism, dielectricity and luminescence near room temperature have been observed in the same molecular complex.


Asunto(s)
Luminiscencia , Magnetismo , Temperatura , Transición de Fase
9.
Nano Lett ; 22(24): 10018-10024, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36475866

RESUMEN

Reversible regulation of ferroelectric polarization possesses great potentials recently in bionic neural networks. Photoinduced cis-trans isomers have changeable dipole moments, but they cannot be directed to some specific orientation. Here, we construct a host-guest composite structure which consists of a porous ferroelectric metal (Ni)-organic framework [Ni(DPA)2] as host and photoisomer, azobenzene (AZB), as guest molecules. When AZB molecules are embedded in the nanopores of Ni(DPA)2 in the form of a single molecule, polarization strength tunable regulation is realized after ultraviolet irradiation of 365 and 405 nm via cis-trans isomerism transformation of AZB. An intrinsic built-in field originating from the distorted {NiN2O4} octahedra in Ni(DPA)2 directs the dipole moments of AZB to the applied electric field. As a result, the overlapped ferroelectric polarization strength changes with content of cis-AZB after ultraviolet and visible irradiation. Such a connection of ferroelectric Ni(DPA)2 structure with cis-trans isomers provides an important strategy for regulating the ferroelectric polarization strength.


Asunto(s)
Estructuras Metalorgánicas , Isomerismo , Luz , Rayos Ultravioleta
10.
Nanotechnology ; 33(28)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35385836

RESUMEN

Despite the demonstrated high-efficiency of solar cells and light-emitting devices based on two-dimensional (2D) perovskites, intrinsic stability of the 2D perovskites is yet far from satisfactory. In this work, we find the 2D (BA)2PbI4perovskite crystals rapidly degrade in the ambient conditions and the photoluminescence (PL) nearly completely quenches in 6 d. Moreover, the PL shoulder band due to defects and absorption band of PbI2gradually rise during degradation, suggesting the precipitation of PbI2. Besides, rod structures are observed in the degraded crystals, which are attributed to the formation of one-dimensional (1D) (BA)3PbI5perovskites. And the degradation can be largely retarded by decreasing the humidity during storage. Therefore, a chemical reaction for the degradation of (BA)2PbI4is proposed, revealing the interactions between water molecules and undercoordinated defects are very critical for understanding the degradation. Enlightened by these findings, dimethyl itaconate (DI) treatment is developed to passivate the defects and block the intrusion of moisture to improve the stability of the (BA)2PbI4. After storage in the ambient environment for 16 d, the DI treated (BA)2PbI4only shows a slight surface degradation without formation of any nanorod-like structures, and the PL intensity retains about 70%. Therefore, our systematic study provides a comprehensive understanding on the degradation dynamics of 2D perovskites, which will promote future development of intrinsically stable 2D perovskites.

11.
J Nanobiotechnology ; 20(1): 411, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109732

RESUMEN

The major challenge to controlling the COVID pandemic is the rapid mutation rate of the SARS-CoV-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is essential to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-CoV-2 variants. Here, we report a synthetic nanobody (named C5G2) obtained by phage display and subsequent antibody engineering. C5G2 has a single-digit nanomolar binding affinity to the RBD domain and inhibits its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assays indicated that monovalent C5G2 could protect the cells from infection with SARS-CoV-2 wild-type virus and most of the viruses of concern, i.e., Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against Omicron BA.1 among all the variants, with an IC50 of 4.9 ng/mL. The cryo-EM structure of C5G2 in complex with the spike trimer showed that C5G2 binds to RBD mainly through its CDR3 at a conserved region that does not overlap with the ACE2 binding surface. Additionally, C5G2 binds simultaneously to the neighboring NTD domain of the spike trimer through the same CDR3 loop, which may further increase its potency against viral infection. Third, the steric hindrance caused by FR2 of C5G2 could inhibit the binding of ACE2 to RBD as well. Thus, this triple-function nanobody may serve as an effective drug for prophylaxis and therapy against Omicron as well as future variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , SARS-CoV-2 , Anticuerpos de Dominio Único , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , COVID-19 , SARS-CoV-2/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus
12.
Anal Chem ; 93(18): 7118-7124, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33905222

RESUMEN

NADH/NAD+ is pivotal to fundamental biochemistry research and molecular diagnosis, but recognition and detection for them are a big challenge at the single-molecule level. Inspired by the biological system, here, we designed and synthesized a biomimetic NAD+/NADH molecular clamp (MC), octakis-(6-amino-6-deoxy)-γ-cyclomaltooctaose, and harbored in the engineered α-HL(M113R)7 nanopore, forming a novel single-molecule biosensor. The single-molecule measurement possesses high selectivity and a high signal-to-noise ratio, allowing to simultaneously recognize and detect for sensing NADH/NAD+ and their transformations.


Asunto(s)
Técnicas Biosensibles , Nanoporos , Biomimética , NAD , Nanotecnología
13.
Small ; 17(19): e2100102, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33788423

RESUMEN

Organic resistive memory (ORM) offers great promise for next-generation high-density multilevel-cell (MLC) data storage. However, the fine tuning of crystalline order among its active layer still remains challenging, which largely restricts ORM behavior. Here, an exceptional solid-state transition from disordered orientations to highly-uniform orientation within the ORM layer is facilely triggered via molecular strategic tailoring. Two diketopyrrolopyrrole-based small molecular analogues (NI1 TDPP and NI2 TDPP) are demonstrated to display different symmetry. The asymmetric NI1 TDPP shows an irregular solid-state texture, while the centro-symmetric NI2 TDPP conforms to an ordered out-of-plane single-crystalline pattern that aligns with the foremost charge transportation along the substrate normal, and exhibits excellent MLC memory characteristics. Moreover, this highly oriented pattern guarantees the large-area film uniformity, leading to the twofold increase in the yield of as-fabricated ORM devices. This study reveals that the solid-state crystalline nanostructural order of organic materials can be controlled by reasonable molecular design to actuate high-performance organic electronic circuits.

14.
Opt Express ; 29(17): 26569-26585, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615089

RESUMEN

Metalens, a subcategory of metasurfaces, has been widely investigated by virtue of its miniature and ultrathin characteristics as well as versatile functionalities. In this study, a tunable bifocal metalens with two continuous-zoom foci is proposed and numerically verified. This design utilizes two cascaded layers of metasurfaces, and different phase profiles for incidences of opposite helicities are imparted on each layer by the combination of geometric phase and propagation phase. When two layers of metasurfaces are actuated laterally, focal lengths of both foci are tuned continuously, with the difference of both focal lengths increasing or decreasing. Additionally, the zoom range for each focus can be designed at will, and the relative intensity of both foci can be modulated by altering the ellipticity of incidence, with the focusing efficiency of the bifocal metalens varying from 19.8% to 32.7% for numerical apertures in a range from 0.53 to 0.78. The proposed device is anticipated to find applications in multi-plane imaging, optical tomography technique, optical data storage, and so on.

15.
Phys Rev Lett ; 127(21): 217401, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34860083

RESUMEN

Van der Waals (vdW) heterojunctions, based on two-dimensional (2D) materials, have great potential for the development of ecofriendly and high-efficiency nanodevices, which shows valuable applications as photovoltaic cells, photodetectors, etc. However, the coexistence of photoelectric conversion and storage in a single device has not been achieved until now. Here, we demonstrate a simple strategy to construct a vdW p-n junction between a WSe_{2} layer and quasi-2D electron gas. After an optical illumination, the device stores the light-generated carriers for up to seven days, and then releases a very large photocurrent of 2.9 mA with bias voltage applied in darkness; this is referred to as chargeable photoconductivity (CPC), which completely differs from any previously observed photoelectric phenomenon. In normal photoconductivity, the recombination of electron-hole pairs occurs at the end of their lifetime; in contrast, infinite-lifetime photocarriers can be generated and stored in CPC devices without recombination. The photoelectric conversion and storage are completely self-excited during the charging process. The ratio between currents in full- and empty-photocarrier states below the critical temperature reaches as high as 10^{9}, with an external quantum efficiency of 93.8% during optical charging. A theoretical model developed to explain the mechanism of this effect is in good agreement with the experimental data. This work paves a path toward the high-efficiency devices for photoelectric conversion and storage.

16.
J Am Chem Soc ; 142(29): 12841-12849, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32602708

RESUMEN

Layered metal-organic structures (LMOSs) as magnetoelectric (ME) multiferroics have been of great importance for realizing new functional devices in nanoelectronics. Until now, however, achieving such room-temperature and single-phase ME multiferroics in LMOSs have proven challenging due to low transition temperature, poor spontaneous polarization, and weak ME coupling effect. Here, we demonstrate the construction of a LMOS in which four Ni-centered {NiN2O4} octahedra form in layer with asymmetric distortions using the coordination bonds between diphenylalanine molecules and transition metal Ni(II). Near room-temperature (283 K) ferroelectricity and ferromagnetism are observed to be both spontaneous and hysteretic. Particularly, the multiferroic LMOS exhibits strong magnetic-field-dependent ME polarization with low-magnetic-field control. The change in ME polarization with increasing applied magnetic field µ0H from 0 to 2 T decreases linearly from 0.041 to 0.011 µC/cm2 at the strongest ME coupling temperature of 251 K. The magnetic domains can be manipulated directly by applied electric field at 283 K. The asymmetrical distortion of Ni-centered octahedron in layer spurs electric polarization and ME effect and reduces spin frustration in the octahedral geometry due to spin-charge-orbital coupling. Our results represent an important step toward the production of room-temperature single-phase organic ME multiferroics.

17.
Opt Express ; 28(16): 23164-23175, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752317

RESUMEN

Fourier ptychographic microscopy (FPM) is a computational imaging technology used to achieve high-resolution imaging with a wide field-of-view. The existing methods of FPM suffer from the positional misalignment in the system, by which the quality of the recovered high-resolution image is determined. In this paper, a forward neural network method with correction of the positional misalignment (FNN-CP) is proposed based on TensorFlow, which consists of two models. Both the spectrum of the sample and four global position factors, which are introduced to describe the positions of the LED elements, are treated as the learnable weights in layers in the first model. By minimizing the loss function in the training process, the positional error can be corrected based on the trained position factors. In order to fit the wavefront aberrations caused by optical components in the FPM system for better recovery results, the second model is designed, in which the spectrum of the sample and coefficients of different Zernike modes are treated as the learnable weights in layers. After the training process of the second model, the wavefront aberration can be fit according to the coefficients of different Zernike modes and the high-resolution complex image can be obtained based on the trained spectrum of the sample. Both the simulation and experiment have been performed to verify the effectiveness of our proposed method. Compared with the state-of-art FPM methods based on forward neural network, FNN-CP can achieve the best reconstruction results.

18.
Opt Express ; 28(25): 38155-38168, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33379634

RESUMEN

Designing freeform optics for illuminating hard-to-reach areas is a challenging and rewarding issue. The current designs of freeform illumination optics are mostly valid in the applications in which the region of interest is easily accessible. What we present here is a general formulation of designing freeform lenses for illuminating hard-to-reach areas. In this method, the freeform lens consists of two elaborately designed surfaces, by which both the intensity distribution and wave-front of the light beam are manipulated in a desired manner. The light beam after refraction by the freeform lens is further guided through a light-guiding system to produce a prescribed illumination on a target plane which is inaccessible. The properties of the light-guiding system are taken into account in the tailoring of the freeform lens profiles to guarantee the prescribed illumination on the target plane. Two examples are presented to demonstrate the elegance of this method in designing freeform optics for illuminating hard-to-reach areas.

19.
Opt Express ; 28(19): 28672-28685, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32988133

RESUMEN

Metasurfaces have been widely investigated for their capabilities of manipulating wavefront versatilely and miniaturizing traditional optical elements into ultrathin devices. In this study, a nanoscale tunable beam splitter utilizing a bilayer of geometric metasurfaces in the visible spectrum is proposed and numerically examined. Inspired by the diffractive Alvarez lens and multilayer geometric metasurfaces, opposite quadratic phase distributions are imparted on both layers, and a varying linear phase gradient will arise through relatively lateral displacement between two layers, generating tunable angles of deflection. In addition, such geometric metasurfaces offer opposite directions of phase gradients for orthogonal circularly polarized incidences, leading to effective polarization beam splitting. Results prove that the splitting angles can be tuned precisely, and the energy split ratio can be effectively changed according to the ellipticity of the polarized incidence. This design could find significant applications in optical communication, measurement, display, and so on.

20.
Molecules ; 25(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143454

RESUMEN

Despite intensive efforts, the fluorescence of perovskite nanocrystals (NCs) still suffers from a poor color purity, which limits the applications in light emitting and multicolor display. A deep understanding on the fundamental of the photoluminescent (PL) spectral broadening is thus of great significance. Herein, the PL decay curves of the CsPbClxBr3-x NCs are monitored at different wavelengths covering the entire PL band. Moreover, energy relaxation time τ and radiative recombination time ß are obtained by numerical fittings. The dependences of τ and 1/ß on the detection wavelength agree well with the steady-state PL spectrum, indicating the observed PL broadening is an intrinsic effect due to the resonance and off-resonance exciton radiative recombination processes. This work not only provides a new analysis method for time-resolved PL spectra of perovskites, but also gains a deep insight into the spectral broadening of the lead halide perovskite NCs.


Asunto(s)
Compuestos de Calcio/química , Nanopartículas/química , Óxidos/química , Titanio/química , Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA