Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genet ; 57: 201-222, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37562413

RESUMEN

Despite accumulating evidence implicating noncoding variants in human diseases, unraveling their functionality remains a significant challenge. Systematic annotations of the regulatory landscape and the growth of sequence variant data sets have fueled the development of tools and methods to identify causal noncoding variants and evaluate their regulatory effects. Here, we review the latest advances in the field and discuss potential future research avenues to gain a more in-depth understanding of noncoding regulatory variants.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple/genética
2.
Plant Physiol ; 192(3): 2203-2220, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36880407

RESUMEN

Drought and cold stresses seriously affect tree growth and fruit yield during apple (Malus domestica) production, with combined stress causing injury such as shoot shriveling. However, the molecular mechanism underlying crosstalk between responses to drought and cold stress remains to be clarified. In this study, we characterized the zinc finger transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10) through comparative analysis of shoot-shriveling tolerance between tolerant and sensitive apple rootstocks. MhZAT10 responded to both drought and cold stresses. Heterologous expression of MhZAT10 in the sensitive rootstock 'G935' from domesticated apple (Malus domestica) promoted shoot-shriveling tolerance, while silencing of MhZAT10 expression in the tolerant rootstock 'SH6' of Malus honanensis reduced stress tolerance. We determined that the apple transcription factor DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 2A (DREB2A) is a direct regulator activating the expression of MhZAT10 in response to drought stress. Apple plants overexpressing both MhDREB2A and MhZAT10 genes exhibited enhanced tolerance to drought and cold stress, while plants overexpressing MhDREB2A but with silenced expression of MhZAT10 showed reduced tolerance, suggesting a critical role of MhDREB2A-MhZAT10 in the crosstalk between drought and cold stress responses. We further identified drought-tolerant MhWRKY31 and cold-tolerant MhMYB88 and MhMYB124 as downstream regulatory target genes of MhZAT10. Our findings reveal a MhDREB2A-MhZAT10 module involved in crosstalk between drought and cold stress responses, which may have applications in apple rootstock breeding programs aimed at developing shoot-shriveling tolerance.


Asunto(s)
Malus , Malus/metabolismo , Respuesta al Choque por Frío/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sequías , Estrés Fisiológico/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
J Environ Sci (China) ; 138: 32-45, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135399

RESUMEN

The air quality in China has improved significantly in the last decade and, correspondingly, the characteristics of PM2.5 have also changed. We studied the interannual variation of PM2.5 in Chengdu, one of the most heavily polluted megacities in southwest China, during the most polluted season (winter). Our results show that the mass concentrations of PM2.5 decreased significantly year-by-year, from 195.8 ± 91.0 µg/m3 in winter 2016 to 96.1 ± 39.3 µg/m3 in winter 2020. The mass concentrations of organic matter (OM), SO42-, NH4+ and NO3- decreased by 49.6%, 57.1%, 49.7% and 28.7%, respectively. The differential reduction in the concentrations of chemical components increased the contributions from secondary organic carbon and NO3- and there was a larger contribution from mobile sources. The contribution of OM and NO3- not only increased with increasing levels of pollution, but also increased year-by-year at the same level of pollution. Four sources of PM2.5 were identified: combustion sources, vehicular emissions, dust and secondary aerosols. Secondary aerosols made the highest contribution and increased year-by-year, from 40.6% in winter 2016 to 46.3% in winter 2020. By contrast, the contribution from combustion sources decreased from 14.4% to 8.7%. Our results show the effectiveness of earlier pollution reduction policies and emphasizes that priority should be given to key pollutants (e.g., OM and NO3-) and sources (secondary aerosols and vehicular emissions) in future policies for the reduction of pollution in Chengdu during the winter months.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Material Particulado/análisis , Estaciones del Año , Monitoreo del Ambiente , China , Aerosoles/análisis
4.
BMC Genomics ; 23(1): 310, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439938

RESUMEN

BACKGROUND: Leaf colour mutations are universally expressed at the seedling stage and are ideal materials for exploring the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in plants. RESULTS: In this research, we analysed the different degrees of albinism in apple (Malus domestica) seedlings, including white-leaf mutants (WM), piebald leaf mutants (PM), light-green leaf mutants (LM) and normal leaves (NL) using bisulfite sequencing (BS-seq) and RNA sequencing (RNA-seq). There were 61,755, 79,824, and 74,899 differentially methylated regions (DMRs) and 7566, 3660, and 3546 differentially expressed genes (DEGs) identified in the WM/NL, PM/NL and LM/NL comparisons, respectively. CONCLUSION: The analysis of the methylome and transcriptome showed that 9 DMR-associated DEGs were involved in the carotenoid metabolism and flavonoid biosynthesis pathway. The expression of different transcription factors (TFs) may also influence the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in apple leaf mutants. This study provides a new method for understanding the differences in the formation of apple seedlings with different degrees of albinism.


Asunto(s)
Albinismo , Malus , Albinismo/genética , Albinismo/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Epigenoma , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantones/genética , Plantones/metabolismo , Transcriptoma
5.
EMBO Rep ; 21(10): e50219, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32852886

RESUMEN

Haploinsufficiency of progranulin (PGRN) is a leading cause of frontotemporal lobar degeneration (FTLD). Loss of PGRN leads to lysosome dysfunction during aging. TMEM106B, a gene encoding a lysosomal membrane protein, is the main risk factor for FTLD with PGRN haploinsufficiency. But how TMEM106B affects FTLD disease progression remains to be determined. Here, we report that TMEM106B deficiency in mice leads to accumulation of lysosome vacuoles at the distal end of the axon initial segment in motor neurons and the development of FTLD-related pathology during aging. Ablation of both PGRN and TMEM106B in mice results in severe neuronal loss and glial activation in the spinal cord, retina, and brain. Enlarged lysosomes are frequently found in both microglia and astrocytes. Loss of both PGRN and TMEM106B results in an increased accumulation of lysosomal vacuoles in the axon initial segment of motor neurons and enhances the manifestation of FTLD phenotypes with a much earlier onset. These results provide novel insights into the role of TMEM106B in the lysosome, in brain aging, and in FTLD pathogenesis.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Animales , Péptidos y Proteínas de Señalización Intercelular/genética , Lisosomas , Proteínas de la Membrana , Ratones , Proteínas del Tejido Nervioso , Progranulinas
6.
Atmos Environ (1994) ; 268: 118844, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34776748

RESUMEN

In order to investigate the effects of the Coronavirus Disease 2019 (COVID-19) lockdown on air quality in cities in southwest China, a single particle aerosol mass spectrometer (SPAMS) and other online equipments were used to measure the air pollution in Chengdu, one of the megacities in this area, before and during the lockdown period. It was found that the concentrations of fine particulate matter (PM2.5), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO) decreased by 38.6%, 77.5%, 47.0%, 35.1% and 14.1%, respectively, while the concentration of ozone (O3) increased by 57.5% from the time before to the time during lockdown. All particles collected during the study period could be divided into eight categories: biomass burning (BB), coal combustion (CC), vehicle emissions (VE), cooking emissions (CE), Dust, K-nitrate (K-NO3), K-sulfate (K-SO4) and K-sulfate-nitrate (K-SN) particles, and their contributions changed significantly after the beginning of lockdown. Compared to before lockdown, the contribution of VE particles experienced the largest reduction (by 14.9%), whereas the contributions of BB and CE particles increased by 7.0% and 7.3%, respectively, during the lockdown period. Regional transmission was critical for pollution formation before lockdown, whereas the pollution that occurred during the lockdown period was caused mainly by locally emitted particles (such as VE, CE and BB particles). Weighted potential source contribution function (WPSCF) analysis further verified and emphasized the difference in the contribution of regional transmission for pollution formation before and during lockdown. In addition, the potential source area and intensity of the particles emitted from different sources or formation mechanisms were quite different.

7.
J Environ Sci (China) ; 112: 25-37, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34955209

RESUMEN

Submicron aerosol is of extensive concern not only due to its significant impact on air quality but also because it is detrimental to human health. In this study, we investigated the characteristics, sources and chemical processes of submicron aerosol based on real-time online measurements of submicron aerosols (NR-PM1) during December 2015 at an urban site in Beijing. The average mass concentration of NR-PM1 was 92.5±84.9 µg/m3, the hourly maximum was 459.1 µg/m3 during the entire observation. The organic aerosol (OA) (55%) was the largest contributor to NR-PM1. The average mass concentration of PAHs was 0.217±0.247 µg/m3, exhibiting the highest concentration at night and the lowest levels in the daytime. The average mass concentration of organic nitrate was 2.52±2.36 µg/m3 and that of inorganic nitrate was 7.62±8.22 µg/m3, accounting for 36% and 64%, respectively, of the total nitrate mass. Positive matrix factorization (PMF) differentiated the OA into five chemical components including LV-OOA, SV-OOA, COA, HOA and CCOA, accounting for 22%, 16%, 13%, 25% and 24% respectively, of the total OA. The average NR-PM1 mass concentration on the heavy polluted days (HPD) was 182.8±70.2 µg/m3, which was approximately 9 times that on clean days (CD). The enhanced secondary formation of SNA was evident on HPD, especially the rapid increase of sulfate (23%) and nitrate (19%).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Beijing , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Estaciones del Año
8.
J Environ Sci (China) ; 101: 282-292, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33334523

RESUMEN

Steel slag (SS) is one of byproduct of steel manufacture industry. The environmental concerns of SS may limit their re-use in different applications. The goal of this study was to investigate the leaching behavior of metals from SS before and after treated by microbially induced carbonate precipitation (MICP). Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure and water leaching tests were performed to evaluate the leaching behavior of major elements (Fe, Mg and Ca) and trace elements (Ba, Cu and Mn) in three scenarios. The concentrations of leaching metals increased with the content of SS. After it reached the peak concentration, the leaching concentration decreased with the content of SS. The leachability of all elements concerned in this study was below 0.5%. The carbonate generated from the MICP process contributed to the low leachability of metals. After bio-modified by MICP process, the leaching concentrations of Ba from TCLP, SPLP and WLT tests were below 2.0 mg/L, which was the limit in drinking water regulated by U.S. EPA. The concentrations of Cu leached out from MICP-treated SS-sand samples were below 1.3 mg/L which is the limit regulated by national secondary drinking water. Compared with the regulations of U.S.EPA and Mississippi Department of Environment Quality (MDEQ), MICP-treated samples were classified as non-hazardous materials with respects to the leaching of metals. Meanwhile, maximum contaminant limits regulated by U.S.EPA states that MICP-treated SS are eco-friendly materials that can be reused as construction materials.


Asunto(s)
Acero , Oligoelementos , Carbonatos , Materiales de Construcción , Metales
9.
J Environ Sci (China) ; 100: 1-10, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33279022

RESUMEN

Following the implementation of the strictest clean air policies to date in Beijing, the physicochemical characteristics and sources of PM2.5 have changed over the past few years. To improve pollution reduction policies and subsequent air quality further, it is necessary to explore the changes in PM2.5 over time. In this study, over one year (2017-2018) field study based on filter sampling (TH-150C; Wuhan Tianhong, China) was conducted in Fengtai District, Beijing, revealed that the annual average PM2.5 concentration (64.8 ± 43.1 µg/m3) was significantly lower than in previous years and the highest PM2.5 concentration occurred in spring (84.4 ± 59.9 µg/m3). Secondary nitrate was the largest source and accounted for 25.7% of the measured PM2.5. Vehicular emission, the second largest source (17.6%), deserves more attention when considering the increase in the number of motor vehicles and its contribution to gaseous pollutants. In addition, the contribution from coal combustion to PM2.5 decreased significantly. During weekends, the contribution from EC and NO3- increased whereas the contributions from SO42-, OM, and trace elements decreased, compared with weekdays. During the period of residential heating, PM2.5 mass decreased by 23.1%, compared with non-heating period, while the contributions from coal combustion and vehicular emission, and related species increased. With the aggravation of pollution, the contribution of vehicular emission and secondary sulfate increased and then decreased, while the contribution of NO3- and secondary nitrate continued to increase, and accounted for 34.0% and 57.5% of the PM2.5 during the heavily polluted days, respectively.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
10.
J Environ Sci (China) ; 90: 364-374, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32081332

RESUMEN

The leaching concentrations of different metals in stainless steel pickling residue (SSPR) were determined and the toxic metals were treated using Na2S∙xH2O, FeSO4∙6H2O, and phosphoric acid. A modified European Community Bureau of Reference (BCR) sequential extraction was used to identify the speciation of the concerned metals. Results showed that SSPR contains a large amount of Ca (58.41%), Fe (29.44%), Cr (3.83%), Ni (2.94%), Mn (2.82%) and some of Al, Cu, Mg, Zn. Among them, Cr and Ni were the most toxic metals in SSPR, thus the raw SSPR falls into hazardous waste category due to the leaching amount of Cr. In addition, the leached Cr was identified as Cr6+ (MgCrO4) in the waste. BCR test revealed that risk assessment code (RAC) of Cr and Ni were 33.29% and 61.7%, indicating they posed "high" and "very high" risk to the environment, respectively. After fixing by Na2S∙xH2O and FeSO4∙6H2O, the leaching concentrations of Cr and Ni were less than 1.5 and 0.5 mg/L, respectively. After fixing by Na2S∙xH2O and FeSO4∙6H2O the treated SSPR can be safely reused as roadbed materials, concrete and cement aggregates. This study provides a useful implication in treatment and beneficial reuse of heavy metal-containing hazardous wastes.


Asunto(s)
Residuos Peligrosos/análisis , Metales Pesados , Acero Inoxidable , Ácidos Fosfóricos/química
11.
J Environ Sci (China) ; 89: 35-46, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31892400

RESUMEN

The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Incendios , Material Particulado/análisis , Aerosoles , Biomasa , China , Ciudades , Estaciones del Año
12.
J Sci Food Agric ; 99(7): 3359-3366, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30584796

RESUMEN

BACKGROUND: The salt tolerance of proteases secreted by Aspergillus oryzae 3.042 closely relates to the utilization of raw materials and the quality of soy sauce. However, little is known about the salt-tolerant proteases and their salt-tolerant mechanisms. RESULTS: In this study, we isolated and identified a salt-tolerant alkaline protease (AP, approximately 29 kDa) produced by A. oryzae 3.042. It was considered as a metal-ion-independent serine protease. The optimum and stable pH values were both pH 9.0 and the optimum temperature was 40 °C. Over 20% relative activity of AP remained in the presence of 3.0 mol L-1 NaCl after 7 days, but its Km and Vmax were only mildly influenced by the presence of 3.0 mol L-1 NaCl, indicating its outstanding salt tolerance. Furthermore, AP was more stable than non-salt-tolerant protease at high salinity. The salt-tolerant mechanisms of AP could be due to more salt bridges, higher proportion of ordered secondary structures and stronger hydrophobic amino acid residues in the interior. CONCLUSIONS: The above results are vital for maintaining, activating and/or modulating the activity of AP in high-salt environments. They would also provide theoretical guidance for the modification of AP and the engineering of A. oryzae 3.042 so as to secrete more AP. © 2018 Society of Chemical Industry.


Asunto(s)
Aspergillus oryzae/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endopeptidasas/química , Endopeptidasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Aspergillus oryzae/química , Aspergillus oryzae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Endopeptidasas/genética , Endopeptidasas/aislamiento & purificación , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Cloruro de Sodio/química , Cloruro de Sodio/metabolismo , Temperatura
13.
Water Sci Technol ; 80(1): 86-97, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31461425

RESUMEN

The present study investigated the preparation of nitric acid modified powder activated carbon (MPAC) and its adsorption of trace amounts of Ni(II) from aqueous solution. Results showed that raw powder activated carbon modified with 15% nitric acid (MPAC-15%) had the most developed pore structure and the highest adsorption efficiency for Ni(II) in aqueous solution. For MPAC-15%, the pore width was dominated by micropores with pore width about 1 nm and the total amount of chemical functional groups of MPAC-15% was 0.6630 mmol/g. Ni(II) adsorption tests indicated that the highest adsorption efficiency of MPAC-15% was 98%. The adsorption saturation time of MPAC-15% was about 120 min and the pH-dependent adsorption test showed that neutral conditions (6.5 < pH < 7.5) were suitable for Ni(II) adsorption. The adsorption kinetic analysis revealed that the pseudo-second order adsorption model fitted the adsorption process significantly. Thus, Ni(II) adsorption by MPAC-15% was dominated not only by physical adsorption via highly developed micropores but also by chemical adsorption between Ni(II) and surface functional groups. Adsorption isotherm analysis illustrated the Langmuir model was favorable for the adsorption of Ni(II), with R2 = 0.9874.


Asunto(s)
Níquel/química , Ácido Nítrico/química , Contaminantes Químicos del Agua/química , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Purificación del Agua
14.
J Environ Sci (China) ; 63: 16-27, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29406101

RESUMEN

In this study, we performed a highly time-resolved chemical characterization of non-refractory submicron particles (NR-PM1) in Beijing by using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The results showed the average NR-PM1 mass concentration to be 56.4±58.0µg/m3, with a peak at 307.4µg/m3. Due to the high frequency of biomass burning in autumn, submicron particles significantly increased in organic content, which accounted for 51% of NR-PM1 on average. Secondary inorganic aerosols (sulfate+nitrate+ammonium) accounted for 46% of NR-PM1, of which sulfate, nitrate, and ammonium contributed 15%, 20%, and 11%, respectively. To determine the intrinsic relationships between the organic and inorganic species, we used the positive matrix factorization (PMF) model to merge the high-resolution mass spectra of the organic species and NO+ and NO2+ ions. The PMF analysis separated the mixed organic and nitrate (NO+ and NO2+) spectra into four organic factors, including hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), cooking organic aerosol (COA), and biomass burning organic aerosol (BBOA), as well as one nitrate inorganic aerosol (NIA) factor. COA (33%) and OOA (30%) contributed the most to the total organic aerosol (OA) mass, followed by BBOA (20%) and HOA (17%). We successfully quantified the mass concentrations of the organic and inorganic nitrates by the NO+ and NO2+ ions signal in the organic and NIA factors. The organic nitrate mass varied from 0.01-6.8µg/m3, with an average of 1.0±1.1µg/m3, and organic nitrate components accounted for 10% of the total nitrate mass in this observation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Beijing , Tamaño de la Partícula , Estaciones del Año
15.
Proteome Sci ; 12(1): 7, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24507458

RESUMEN

BACKGROUND: Apple, an invaluable fruit crop worldwide, is often prone to infection by pathogenic fungi. Identification of potentially resistance-conferring apple proteins is one of the most important aims for studying apple resistance mechanisms and promoting the development of disease-resistant apple strains. In order to find proteins which promote resistance to Marssonina coronaria, a deadly pathogen which has been related to premature apple maturation, proteomes from apple leaves inoculated with M. coronaria were characterized at 3 and 6 days post-inoculation by two dimensional electrophoresis (2-DE). RESULTS: Overall, 59 differentially accumulated protein spots between inoculation and non-inoculation were successfully identified and aligned as 35 different proteins or protein families which involved in photosynthesis, amino acid metabolism, transport, energy metabolism, carbohydrate metabolism, binding, antioxidant, defense and stress. Quantitative real-time PCR (qRT-PCR) was also used to examine the change of some defense and stress related genes abundance under inoculated conditions. CONCLUSIONS: In a conclusion, different proteins in response to Marssonina coronaria were identified by proteomic analysis. Among of these proteins, there are some PR proteins, for example class III endo-chitinase, beta-1,3-glucanase and thaumatine-like protein, and some antioxidant related proteins including aldo/keto reductase AKR, ascorbate peroxidase and phi class glutathione S-transferase protein that were associated with disease resistance. The transcription levels of class III endo-chitinase (L13) and beta-1, 3-glucanase (L17) have a good relation with the abundance of the encoded protein's accumulation, however, the mRNA abundance of thaumatine-like protein (L22) and ascorbate peroxidase (L28) are not correlated with their protein abundance of encoded protein. To elucidate the resistant mechanism, the data in the present study will promote us to investigate further the expression regulation of these target proteins.

16.
Water Res ; 249: 120735, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007898

RESUMEN

Phosphonate used as scale inhibitor is a non-negligible eutrophic contaminant in corresponding polluted waters. Besides, its conversion to orthophosphate (ortho-P) is a precondition for realizing bioavailable phosphorus recovery. Due to the feeble degradation efficiency with less than 30 % from classical Fenton commonly used in industrial wastewater treatment and itself vulnerable to strong inhibition interference of matrix chloride ions, we proposed an electrochemical approach to transform the native salt in the solution into oxidizing substances, sort of achieving beneficial utilization of matrix waste, and enhanced the ortho-P conversion rate of 1-Hydroxyethane-1,1-diphosphonic acid (HEDP) to 89.2 % (± 3.6 %). In electrochlorination system, it was found that HEDP rapidly complexed with Fe(II) and then coordinated in-situ Fe(III) to release free HEDP via intramolecular metal-ligand electron transfer reaction. The subsequent degradation mainly rooted in the oxidation of pivotal reactive species HClO, FeIVO2+ and 1O2, causing C-P and CC bonds to fracture in sequence. Eventually the organically bound phosphorus of HEDP was recovered as ortho-P. This study acquainted the audiences with the rare mechanism of chloridion-triggered HEDP degradation under electrochemical way, as well as offered a feasible technology for synchronous transformation of organically bound phosphorus to ortho-P and elimination from phosphonates.


Asunto(s)
Organofosfonatos , Contaminantes Químicos del Agua , Fosfatos , Compuestos Férricos , Ácido Etidrónico , Oxidación-Reducción , Fósforo , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno/química
17.
J Hazard Mater ; 472: 134489, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735181

RESUMEN

Due to the high biotoxicity and persistence of polycyclic aromatic hydrocarbons (PAHs), the remediation of PAHs-contaminated soil becomes an intractable problem. Persulfate-based advanced oxidation processes are widely used to degrade PAHs in aquatic environment. However, they are not convenient for used in soil due to the heterogeneity and complexity of soil matrix. In this study, a green and convenient ball milling process is introduced to activate persulfate for the remediation of PAHs-contaminated soil. About 82.5% PAHs were removed with 10% wt. Na2S2O8 (PS) addition and ball-milling for 2 h under 500 r/min. The degradation of PAHs is attributed to the attack of radicals (SO4·- and·OH) generated from the activation of PS by mechanochemistry. Moreover, stable Si-O bonds were disrupted during ball-milling process, and formed free electron on the surface of soil particles. This facilitates the electron transfer from oxidants to contaminants. The particle size, surface element composition, functional group, and thermogravimetric analysis confirmed the slight disturbance of ball-milling-assisted PS process on the physical and chemical properties of soil. Therefore, ball-milling assisted PS approach would be a promising technology for the remediation of PAHs-contaminated soil.

18.
Huan Jing Ke Xue ; 45(6): 3756-3764, 2024 Jun 08.
Artículo en Zh | MEDLINE | ID: mdl-38897795

RESUMEN

To investigate the concentration characteristics and sources of metal elements in PM2.5 during winter heavy pollution in the southern Sichuan urban agglomeration (Zigong, Luzhou, Neijiang, and Yibin), the metal elements in PM2.5 were measured using membrane sampling methods from December 30, 2018 to January 14, 2019, and the enrichment factor method (EF) and positive matrix factorization(PMF) were applied to investigate the sources of metal elements. The metal element observation data of Zigong in the same period of 2015 were also used to investigate the changes in metal element pollution and enrichment in Zigong in the middle and end of the implementation of China's Air Pollution Prevention and Control Action Plan. The main findings were as follows:① The concentrations and percentages of metal elements in particulate matter in different cities did not differ significantly. The elements with higher concentrations in the four cities showed similarities, with Al, Sb, and Fe at the top. From the comparison of different observation periods in Zigong, the concentrations of all elements except Tl changed. ② The results of the enrichment factor calculation showed that the enrichment of the elements Cr (Zigong and Yibin), Ni, Cu, As, Se, Ag, Cd, Sb, Tl, and Pb in the urban agglomeration was high. The comparison of the enrichment levels of elements in Zigong for different observation periods showed that the enrichment levels of all elements, except Cu, tended to decrease in the winter observation period of 2018. ③ The results of PMF source analysis showed that the metal elements in each city mainly originated from dust sources, coal-fired sources, industrial sources, and traffic sources, whereas there was a mixed contribution among the sources. The contribution of the main sources differed among cities, in which Zigong was dominated by traffic dust sources and mixed sources, Luzhou was dominated by industrial sources, Neijiang had a similar contribution from different sources, and Yibin was dominated by traffic sources.

19.
Tree Physiol ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943359

RESUMEN

Stress tolerance in apple (Malus domestica) can be improved by grafting to a stress-tolerant rootstock, such as 'SH6' (Malus honanensis × M. domestica 'Ralls Genet'). However, the mechanisms of stress tolerance in this rootstock are unclear. In Arabidopsis (Arabidopsis thaliana), the transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10) is a key component of plant tolerance to multiple abiotic stresses and positively regulates antioxidant enzymes. However, how reactive oxygen species (ROS) are eliminated upon activation of ZAT10 in response to abiotic stress remains elusive. Here, we report that MhZAT10 in the rootstock SH6 directly activates the transcription of three genes encoding the antioxidant enzymes MANGANESE SUPEROXIDE DISMUTASE 1 (MhMSD1), ASCORBATE PEROXIDASE 3A (MhAPX3a), and CATALASE 1 (MhCAT1) by binding to their promoters. Heterologous expression in Arabidopsis protoplasts showed that MhMSD1, MhAPX3a, and MhCAT1 localize in multiple subcellular compartments. Overexpressing MhMSD1, MhAPX3a, or MhCAT1 in SH6 fruit calli resulted in higher superoxide dismutase, ascorbate peroxidase, and catalase enzyme activities in their respective overexpressing calli than in those overexpressing MhZAT10. Notably, the calli overexpressing MhZAT10 exhibited better growth and lower ROS levels under simulated osmotic stress. Apple SH6 plants overexpressing MhZAT10 in their roots via Agrobacterium rhizogenes-mediated transformation also showed enhanced tolerance to osmotic stress, with higher leaf photosynthetic capacity, relative water content in roots, and antioxidant enzyme activity, as well as less ROS accumulation. Overall, our study demonstrates that the transcription factor MhZAT10 synergistically regulates the transcription of multiple antioxidant-related genes and elevates ROS detoxification.

20.
Environ Sci Pollut Res Int ; 31(5): 7934-7947, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38170362

RESUMEN

Carbonaceous particles are an important chemical component of atmospheric fine particles. In this study, a single particle aerosol mass spectrometer was used to continuously measure the carbonaceous particles in Chengdu, one of the megacities most affected by haze in China, from January 22 to March 3, 2021. During the observation period, the average mass concentration of PM2.5 was 62.3 ± 37.2 µg m-3, and the emissions from mobile sources were more prominent. Carbonaceous particles accounted for 68.6% of the total particles and could be classified into 10 categories, with elemental carbon (EC) mixed with sulfate (EC-S) particles making the highest contribution (33.1%). EC particles rich in secondary components and organic carbon (OC) particles rich in secondary component exhibited different diurnal variations, suggesting different sources and mixing mechanisms. From "excellent" to "polluted" days, the contributions of EC-S, EC mixed with sulfate and nitrate (EC-SN) and OC mixed with EC (OC-EC) particles increased by 9.8%, 4.5% and 6.6%, respectively, and thus these particles are key targets for future pollution control. The potential source contribution of the southwest area was stronger than that of other areas, and the potential contribution of regional transport to EC-related particles was stronger than to OC-related particles. Most particles were highly mixed with sulfate or nitrate, and the level of secondary mixing further enhanced as pollution worsened.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula , Nitratos/análisis , Estaciones del Año , China , Compuestos Orgánicos , Aerosoles/análisis , Carbono/análisis , Sulfatos/análisis , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA