Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Am Chem Soc ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213650

RESUMEN

Organic room-temperature phosphorescence (RTP) and afterglow materials hold great potential for various applications, but there remain inherent trade-offs between the afterglow efficiency and the lifetime. Here, we propose a dual-mechanism design strategy, leveraging the RTP or thermally activated delayed fluorescence (TADF) mechanism for a high afterglow efficiency and the organic long-persistent luminescence (OLPL) mechanism for a prolonged afterglow duration. The intramolecular charge transfer (ICT)-type difluoroboron ß-diketonate molecules with a large S1 dipole moment are doped as the luminescent component into the organic matrix with a large dipole moment, and a series of TADF-type afterglow materials can be achieved with an afterglow efficiency of up to 88.7% and an afterglow lifetime of 200 ms. To prolong the afterglow duration, an electron donor is introduced as the third component to generate traps and facilitate charge separation. The obtained materials exhibit a dual afterglow mechanism, first exhibiting a TADF/RTP afterglow with an afterglow efficiency of up to 50.9%, followed by an hours-long OLPL afterglow emission with an afterglow efficiency of up to 13.1%. Further investigations reveal that an appropriate heavy-atom effect can facilitate the intersystem crossing process, which can promote the charge separation process and thus improve the OLPL afterglow performance. Additionally, rare-earth upconversion materials are introduced into OLPL materials to enable their near-infrared excitation properties, showcasing their potential applications in bioimaging.

2.
Chemistry ; 30(18): e202303834, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267399

RESUMEN

Blue afterglow constitutes of one of the primary afterglow colors and can convert into other afterglow colors through energy transfer. The reported studies show the fabrication of blue afterglow emitters, but most of them are formed by room-temperature phosphorescence mechanism and require UVB lights as excitation source (these high-energy lights may damage organic systems). Here we report visible-light-excitable blue thermally activated delayed fluorescence type (TADF-type) afterglow materials via delicate control of excited states in difluoroboron ß-diketonate (BF2bdk) systems. Tiny change of the substituents in BF2bdk system has been found to pose significant influence on excited state energy levels and consequently narrow the singlet-triplet splitting energy of the system. As a result, both forward and reverse intersystem crossing have been accelerated, leading to the emergence of BF2bdk's TADF-type organic afterglow in rigid crystalline matrices. The resultant TADF-type afterglow materials exhibit emission lifetimes of several hundred milliseconds, photoluminescence quantum yield (PLQY) of 24.7 % and display temperature responsive property.

3.
Chemphyschem ; : e202400522, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143702

RESUMEN

The long-emission-lifetime nature of room-temperature phosphorescence (RTP) materials lays the foundation of their applications in diverse areas. Despite the advantage of mechanical property, processability and solvent dispersity, the emission lifetimes of polymer-based room-temperature phosphorescence materials remain not particularly long because of the labile nature of organic triplet excited states under ambient conditions. Specifically, ambient phosphorescence lifetime (τP) longer than 2 s and even 4 s have rarely been reported in polymer systems. Here, luminescent compounds with small phosphorescence rate on the order of approximately 10-1 s-1 are designed, ethylene-vinyl alcohol copolymer (EVOH) as polymer matrix and antioxidant 1010 to protect organic triplets are employed, and ultralong phosphorescence lifetime up to 4.6 s under ambient conditions by short-term and low-power excitation are achieved. The resultant materials exhibit high afterglow brightness, long afterglow duration, excellent processability into large area thin films, high transparency and thermal stability, which display promising anticounterfeiting and data encryption functions.

4.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792203

RESUMEN

Narrowband afterglow materials display interesting functions in high-quality anti-counterfeiting and multiplexed bioimaging. However, there is still a limited exploration of these afterglow materials, especially for those with a full width at half maxima (FWHM) around 30 nm. Here, we report the fabrication of narrowband organic/inorganic hybrid afterglow materials via energy transfer technology. Coronene (Cor) with a long phosphorescence feature and broad phosphorescence band is selected as the donor for energy transfer, and inorganic quantum dots (QDs) of CdSe/ZnS with a narrowband emission are used as acceptors. Upon doping into the organic matrix, the resultant three-component materials exhibit a narrowband afterglow with an afterglow lifetime of approximately 3.4 s and an FWHM of 31 nm. The afterglow wavelength of the afterglow materials can be controlled by the QDs. This work based on organic/inorganic hybrids provides a facile approach for developing multicolor and narrowband afterglow materials, as well as opens a new way for expanding the features of organic afterglow for multifunctional applications. It is expected to rely on narrowband afterglow emitters to solve the "spectrum congestion" problem of high-density information storage in optical anti-counterfeiting and information encryption.

5.
Chemistry ; 29(22): e202203670, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36637100

RESUMEN

It remains challenging to fabricate highly-efficient and long-lived organic afterglow materials, especially in the case of red afterglow systems. Here we develop advanced charge transfer (CT) technology to boost afterglow efficiency and lifetimes in fluoranthene-containing dopant-matrix systems. First, organic CT molecules possess singlet-triplet splitting energy (ΔEST ) of around 0.5 eV, much smaller than localized excitation systems. Second, upon doping into suitable organic matrices, dipole-dipole interactions between 1 CT states and organic matrices reduce 1 CT levels with less effect on 3 CT levels, and thus further narrow ΔEST and enhance intersystem crossing. Third, the rigid planar structure of fluoranthene groups and the rigid microenvironment provided by organic matrices can suppress phosphorescence quenching. Forth, the multiple donor design enables spectral red-shifts to red region and switches on TADF mechanism to improve afterglow efficiency to 13.1 % and maintain afterglow lifetime of 0.1 s. Such high-performance afterglow materials have been rarely explored in reported studies.

6.
Chemistry ; 28(35): e202200852, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35441409

RESUMEN

The past several years have witnessed the tremendous development of novel chemical structures, new design strategies and intriguing applications in the field of room-temperature phosphorescence (RTP) and organic afterglow materials. This Review article focuses on recent advancements of high-performance organic afterglow materials obtained by two-component design strategies such as a dopant-matrix, donor-acceptor, sensitization, and energy-transfer strategies. Based on some cutting-edge studies, organic afterglow efficiency has been largely improved, exceeding 90 % in several cases. Organic afterglow durations reach tens of seconds in phosphorescence systems and hours in donor-acceptor systems. Organic afterglow brightness outcompetes some inorganic afterglow materials in the first several seconds after ceasing excitation source. Organic afterglow colors cover the whole visible regions and extend to near-infrared regions with respectful afterglow efficiency. On the basis of these achievements, researchers demonstrate promising applications of organic afterglow materials in diverse fields, which has also been reviewed.

7.
Chemistry ; 27(67): 16735-16743, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643972

RESUMEN

The fabrication of room-temperature organic phosphorescence and afterglow materials, as well as the transformation of their photophysical properties, has emerged as an important topic in the research field of luminescent materials. Here, we report the establishment of energy landscapes in dopant-matrix organic afterglow systems where the aggregation states of luminescent dopants can be controlled by doping concentrations in the matrices and the methods of preparing the materials. Through manipulation by thermodynamic and kinetic control, dopant-matrix afterglow materials with different aggregation states and diverse afterglow properties can be obtained. The conversion from metastable aggregation state to thermodynamic stable aggregation state of the dopant-matrix afterglow materials to leads to the emergence of intriguing afterglow transformation behavior triggered by thermal and solvent annealing. The thermodynamically unfavorable reversible afterglow transformation process can also be achieved by coupling the dopant-matrix afterglow system to mechanical forces.

8.
Angew Chem Int Ed Engl ; 60(31): 17138-17147, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34060200

RESUMEN

We report a highly efficient dopant-matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60-70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC ) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron ß-diketonate (BF2 bdk) compounds are designed with multiple electron-donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2 bdk excited states by dipole-dipole interactions and thus enhance the intersystem crossing of BF2 bdk excited states. Through dopant-matrix collaboration, the efficient TADF-type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large-area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications.

9.
Proc Natl Acad Sci U S A ; 114(45): 11844-11849, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078381

RESUMEN

An important feature of biological systems to achieve complexity and precision is the involvement of multiple components where each component plays its own role and collaborates with other components. Mimicking this, we report living supramolecular polymerization achieved by collaborative assembly of two structurally dissimilar components, that is, platinum(II) complexes and poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA). The PAA blocks neutralize the charges of the platinum(II) complexes, with the noncovalent metal-metal and π-π interactions directing the longitudinal growth of the platinum(II) complexes into 1D crystalline nanostructures, and the PEG blocks inhibiting the transverse growth of the platinum(II) complexes and providing the whole system with excellent solubility. The ends of the 1D crystalline nanostructures have been found to be active during the assembly and remain active after the assembly. One-dimensional segmented nanostructures with heterojunctions have been produced by sequential growth of two types of platinum(II) complexes. The PAA blocks act as adapters at the heterojunctions for lattice matching between chemically and crystallographically different platinum(II) complexes, achieving heterojunctions with a lattice mismatch as large as 21%.

10.
Angew Chem Int Ed Engl ; 59(47): 21163-21169, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32725683

RESUMEN

Chiral self-recognition and self-discrimination are of vital importance to biological processes. In this work, 2D regular rhombic nanocrystals (RS-NC) were fabricated through heterochiral self-discrimination between chiral polynuclear gold(I)-sulfido complex enantiomers, [(R-BINAP)4 Au10 S4 ]Cl2 (R-Au10 ) and [(S-BINAP)4 Au10 S4 ]Cl2 (S-Au10 ), in MeOH without the need for any surfactants or templates. The monitoring of nanocrystals (NCs) formation by TEM and DLS has uncovered the self-assembly process and shape evolution of the NCs and revealed a screw-dislocation dictated spiral growth of the rhombic NCs. Upon addition of chiral anions, the morphology of the gold NCs was found to change from rhombic to strip and quasi-hexagonal nanosheets, arising from reverse and rotational layer-by-layer stacking to give the bilayer NCs. By applying a high temperature, rhombic gold nanoisland films were obtained from the rhombic NCs. The current study has provided a simple strategy towards the construction of regular geometric 2D NCs as well as their chiral anion-tuned and reverse and rotational stacking-determined morphology change by heterochiral self-discrimination.

11.
Angew Chem Int Ed Engl ; 58(35): 12004-12009, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31265748

RESUMEN

Transparent omniphobic or anti-smudge coatings with glass-like wear resistance and polymer-like bendability have many potential applications but there are no reports of such materials. We Report herein a molecular composite possessing these properties. The composite is prepared via the photo-initiated ring-opening polymerization of the epoxide rings of glycidyloxypropyl polyhedral silsesquioxane (GPOSS). While the desired hardness is provided by the silica core, the flexibility is imparted by the glycidyloxypropyl network. Oil and water repellency is achieved without adversely affecting the other properties by incorporating a low-surface-tension liquid lubricant poly(dimethyl siloxane). On the final coating, various organic solvents and water readily and cleanly glide, while complex fluids, such as ink and paint facilely contract. These properties are retained after an initially flat coating sample is rolled into a U-shape 500 times or is abraded with steel wool.

12.
J Am Chem Soc ; 140(30): 9594-9605, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30040413

RESUMEN

Establishment of energy landscape has emerged as an efficient pathway for improved understanding and manipulation of both thermodynamic and kinetic behaviors of complicated supramolecular systems. Herein, we report the establishment of energy landscapes of supramolecular coassembly of platinum(II) complexes and polymers, as well as the fabrication of nanostructures with enhanced complexity and intriguing properties from the coassembly systems. In the energy landscape, coassembly at room temperature has been found to only allow the longitudinal growth of platinum(II) complexes and block copolymers into core-shell nanofibers that are the kinetically trapped products. Thermal annealing can switch on the transverse growth of platinum(II) complexes and block copolymers to produce core-shell nanobelts that are the thermodynamically stable nanostructures. The extents of the transverse growth are found to increase with thermal annealing temperatures, leading to nanobelts with larger widths. Besides, rapid quenching of a hot coassembly mixture to room temperature can capture intermediate nanobelt- block-nanofiber nanostructures that are metastable and capable of converting to nanobelts upon further incubation at room temperature. Moreover, sonication treatment has been found to couple with the energy landscape of the coassembly system and open a unique energy-driven pathway to activate the kinetically forbidden nanofiber-to-nanobelt morphological transformation. Furthermore, based on the established energy landscapes, nanosphere- block-nanobelt nanostructures with distinct segmented architectures have been fabricated by thermal annealing of the ternary mixture of platinum(II) complexes, block copolymers, and polymer brushes in a one-pot and single-step procedure. Finally, the nanobelts and nanosphere- block-nanobelt nanostructures are found to possess intriguing morphological stability against acid and dilution, exhibiting characteristics that are important for promising biomedical applications.

13.
Langmuir ; 34(50): 15350-15359, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30427695

RESUMEN

In reported experimental studies, DNA/polymer self-assemblies are usually kinetically trapped, leading to the encapsulation and irregular collapse of DNA chains within the resultant assemblies. In striking contrast, eukaryotic cells use tetrasome-to-nucleosome pathways to escape possible kinetic trapping for the formation of well-defined 10 nm chromatin fibers. Here, we report a novel pathway for DNA and amphiphilic diblock copolymer self-assembly inspired by the tetrasome pathway with highly controllable kinetics. The polymer is an A- b-B diblock copolymer with a hydrophilic and noninteractive block A and a hydrophobic and interactive block B. Below the critical water content for the micellization, B blocks wrap the backbone of a DNA chain by weak electrostatic interactions to form a linear DNA/polymer complex. With a gradual increase in the water content, the diblock copolymer unimers in the bulk solution tend to aggregate on the linear DNA/polymer complex, which induces the originally wrapped DNA chain, to change its conformation to wrap around the polymer aggregate, guiding and tailoring the self-assembly. Highly controllable kinetics is achieved via the reduced DNA/polymer electrostatic interactions and the high dynamics of the polymer chains in the system. DNA/polymer self-assembly leads to tailorable and morphologically pure core-shell nanofibers. Compared to the DNA/micelle self-assembly pathway described in our previous study, the present self-assembly pathway exhibits advantages for the fabrication of flexible nanofibers with lengths in micrometers and the potential for unique applications in preparing not only 2D networks at extremely low percolation thresholds but also chemiresistors with large on/off current ratios.


Asunto(s)
ADN/química , Nanofibras/química , Polímeros/química , Tamaño de la Partícula , Propiedades de Superficie
14.
J Am Chem Soc ; 136(45): 15933-41, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25337872

RESUMEN

Water-soluble monodisperse core-shell structured polymeric nanorings were robustly produced via precise self-assembly between a circular plasmid DNA (monodisperse) and monodisperse polymeric core-shell micelles; the structural parameters of the nanorings can be tailored by controlling the structural parameters of the DNA and the micelles. A study on the morphology-dependent properties of the obtained nanorings revealed that the nanorings exhibit a much higher binding affinity than their linear counterparts when interacting with oppositely charged spheres of a similar diameter. In addition, the formation of one-to-one nanoring/sphere complexes, in which the nanoring circles the equator of the sphere, was observed, which is manifested as a "host-guest" inclusion complex on the nanoscale.


Asunto(s)
Nanoestructuras/química , Nanotecnología , Agua/química , ADN/química , Concentración de Iones de Hidrógeno , Polímeros/química , Sales (Química)/química , Solubilidad
15.
J Phys Chem Lett ; 15(6): 1658-1667, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315167

RESUMEN

The combination of room-temperature phosphorescence (RTP) and covalent organic frameworks (COFs) would give rise to a new class of functional materials with sensing and responsive properties. However, such organic materials have been rarely reported, especially for those with long phosphorescence lifetimes. Here we report the incorporation of RTP emitters into COFs either via chemical decoration or noncovalent doping to achieve ultralong RTP in a COF system. The RTP emitters are designed with small phosphorescence rates and consequently exhibit ultralong phosphorescence lifetimes when nonradiative decay and oxygen quenching are suppressed in COF system. The RTP-COF materials have been found to possess oxygen sensing properties with large response of phosphorescence lifetimes.

16.
Chem Sci ; 14(30): 8180-8186, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37538825

RESUMEN

Manipulation of excited states and their dynamics represents a central topic in luminescence systems. We report an unexpected emergence of a high-performance organic afterglow in pyrylium induced photopolymerization systems, as well as the establishment of the mechanism landscape of the afterglow systems as a function of monomer types. In the case of methyl methacrylate, after pyrylium-catalyzed photopolymerization, the obtained materials exhibit a TADF-type organic afterglow with an afterglow efficiency of 70.4%. By using heavy-atom-containing methacrylate, the external heavy atom effect speeds up phosphorescence decay and switches on room-temperature phosphorescence in pyrylium-polymer systems. When 9-vinylcarbazole is used, the resultant materials display organic long persistent luminescence with hour-long durations and emission maxima around 650 nm. The intriguing mechanism landscape reflects the delicate balance of multiple photophysical processes in the pyrylium induced organic afterglow systems, which has been rarely explored in the reported studies.

17.
J Phys Chem Lett ; 14(49): 11142-11151, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38054432

RESUMEN

Dopant-matrix organic afterglow materials exhibit ease of fabrication and intriguing functions in diverse fields. However, a deep and comprehensive understanding of their photophysical behaviors remains elusive. Here we report manipulation of a room-temperature phosphorescence/thermally activated delayed fluorescence (RTP/TADF) afterglow mechanism via the mismatch/match of intermolecular charge transfer between dopants and matrices. When dispersed in inert crystalline matrices, the luminescent dopants show RTP lifetimes up to 2 s. Interestingly, when suitable organic matrices are selected, the resultant dopant-matrix materials display a TADF-type afterglow under ambient conditions due to the formation of dopant-matrix intermolecular charge transfer complexes. Detailed studies reveal that reverse intersystem crossing from dopants' T1 states to charge transfer complexes' S1 states, which features a moderate kRISC of 101-102 s-1, is responsible for the emergence of a TADF-type organic afterglow in rigid crystalline matrices. Such less reported delicate photophysics reveals a new aspect of the excited state property in dopant-matrix afterglow systems.

18.
Nat Commun ; 14(1): 1987, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031245

RESUMEN

It is common sense that emission maxima of phosphorescence spectra (λP) are longer than those of fluorescence spectra (λF). Here we report a serendipitous finding of up-converted room-temperature phosphorescence (RTP) with λP < λF and phosphorescence lifetime > 0.1 s upon doping benzophenone-containing difluoroboron ß-diketonate (BPBF2) into phenyl benzoate matrices. The up-converted RTP is originated from BPBF2's Tn (n ≥ 2) states which show typical 3n-π* characters from benzophenone moieties. Detailed studies reveal that, upon intersystem crossing from BPBF2's S1 states of charge transfer characters, the resultant T1 and Tn states build T1-to-Tn equilibrium. Because of their 3n-π* characters, the Tn states possess large phosphorescence rates that can strongly compete RTP(T1) to directly emit RTP(Tn) which violates Kasha's rule. The direct observation of up-converted RTP provides deep understanding of triplet excited state dynamics and opens an intriguing pathway to devise visible-light-excitable deep-blue afterglow emitters, as well as stimuli-responsive afterglow materials.

19.
Chem Commun (Camb) ; 59(11): 1525-1528, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36661043

RESUMEN

It is well-known that benzophenone has a short phosphorescence lifetime of around 1 ms even at 77 K. Here we report a benzophenone-containing emitter with an unprecedented long phosphorescence lifetime of 1.8 s under ambient conditions, which can be attributed to its T1 state of localized excitation nature as revealed by detailed studies.

20.
Chem Commun (Camb) ; 59(82): 12302-12305, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37752876

RESUMEN

We report a multi-resonant thermally activated delayed fluorescent (MRTADF) afterglow emitter with unprecedented long emission lifetime > 100 ms, full-width at half-maximum < 40 nm, and deep-blue emission color of CIEy at 0.048. Such emitters remain rarely achieved and would show potential applications in multiplexed bioimaging and high-density information encryption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA