Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Mol Biol ; 114(3): 46, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630415

RESUMEN

Peach fruit rapidly soften after harvest, a significant challenge for producers and marketers as it results in rotting fruit and significantly reduces shelf life. In this study, we identified two tandem genes, PpNAC1 and PpNAC5, within the sr (slow ripening) locus. Phylogenetic analysis showed that NAC1 and NAC5 are highly conserved in dicots and that PpNAC1 is the orthologous gene of Non-ripening (NOR) in tomato. PpNAC1 and PpNAC5 were highly expressed in peach fruit, with their transcript levels up-regulated at the onset of ripening. Yeast two-hybrid and bimolecular fluorescence complementation assays showed PpNAC1 interacting with PpNAC5 and this interaction occurs with the tomato and apple orthologues. Transient gene silencing experiments showed that PpNAC1 and PpNAC5 positively regulate peach fruit softening. Yeast one-hybrid and dual luciferase assays and LUC bioluminescence imaging proved that PpNAC1 and PpNAC5 directly bind to the PpPGF promoter and activate its transcription. Co-expression of PpNAC1 and PpNAC5 showed higher levels of PpPGF activation than expression of PpNAC1 or PpNAC5 alone. In summary, our findings demonstrate that the tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of PpPGF to regulate fruit softening during peach fruit ripening.


Asunto(s)
Prunus persica , Solanum lycopersicum , Prunus persica/genética , Frutas/genética , Filogenia , Saccharomyces cerevisiae , Solanum lycopersicum/genética , Factores de Transcripción/genética
2.
New Phytol ; 243(3): 1050-1064, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872462

RESUMEN

Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Plantas , Prunus persica , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Prunus persica/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Secuencia de Bases , Polimorfismo de Nucleótido Simple/genética , Genes de Plantas
3.
BMC Public Health ; 24(1): 1097, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643079

RESUMEN

BACKGROUND: To analyse the association among the simultaneous effects of dietary intake, daily life behavioural factors, and frailty outcomes in older Chinese women, we predicted the probability of maintaining physical robustness under a combination of different variables. METHODS: The Fried frailty criterion was used to determine the three groups of "frailty", "pre-frailty", and "robust", and a national epidemiological survey was performed. The three-classification decision tree model was fitted, and the comprehensive performance of the model was evaluated to predict the probability of occurrence of different outcomes. RESULTS: Among the 1,044 participants, 15.9% were frailty and 50.29% were pre-frailty; the overall prevalence first increased and then decreased with age, reaching a peak at 70-74 years of age. Through univariate analysis, filtering, and embedded screening, eight significant variables were identified: staple food, spices, exercise (frequency, intensity, and time), work frequency, self-feeling, and family emotions. In the three-classification decision tree, the values of each evaluation index of Model 3 were relatively average; the accuracy, recall, specificity, precision, and F1 score range were between 75% and 84%, and the AUC was also greater than 0.800, indicating excellent performance and the best interpretability of the results. Model 3 takes exercise time as the root node and contains 6 variables and 10 types, suggesting the impact of the comprehensive effect of these variables on robust and non-robust populations (the predicted probability range is 6.67-93.33%). CONCLUSION: The combined effect of these factors (no exercise or less than 0.5 h of exercise per day, occasional exercise, exercise at low intensity, feeling more tired at work, and eating too many staple foods (> 450 g per day) are more detrimental to maintaining robustness.


Asunto(s)
Fragilidad , Humanos , Femenino , Anciano , Fragilidad/diagnóstico , Anciano Frágil , Dieta , Ejercicio Físico , Estilo de Vida
4.
Langmuir ; 39(9): 3411-3419, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802648

RESUMEN

In the field of energy-containing materials, the modification of nanoaluminum powders has been widely studied. However, in modified experimental design, the lack of theoretical prediction usually leads to long experimental cycles and high resource consumption. To this end, this study evaluated the process and effect of dopamine (PDA)- and polytetrafluoroethylene (PTFE)-modified nanoaluminum powders based on molecular dynamics (MD). Through the calculation of the coating stability, compatibility, and oxygen barrier performance of the modified material, the modification process and effect were explored from a microscopic point of view. The results showed that the adsorption of PDA on the nanoaluminum was the most stable, and the binding energy was 463.03 kcal·mol-1. PDA and PTFE with different ratios are compatible systems at 350 K, and the best compatibility ratio is 10 wt % PTFE/90 wt % PDA. The 90 wt % PTFE/10 wt % PDA bilayer model has the best barrier performance for oxygen molecules in a wide temperature range. The calculated results of the coating stability agree with the experiments, and it is pointed out that it is feasible to evaluate the modification effect in advance by MD simulation. In addition, the simulation results concluded that the double-layered PDA and PTFE have better oxygen barrier properties. Compatibility can be used only to determine whether phase separation occurs between mixtures and is not directly related to the dense mixing of polymers and the barrier properties of small gas molecules. The simulation provided in this article can predict the experimental results and provide theoretical guidance for coating modification experiments in order to reduce unnecessary experiments, shorten the experimental cycle, and reduce costs.

5.
BMC Geriatr ; 23(1): 340, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259039

RESUMEN

BACKGROUND: This study systematically reviewed injury death and causes in the elderly population in China from 2000 to 2020, to prevent or reduce the occurrence of injuries and death. METHODS: The CNKI, VIP, Wan Fang, MEDLINE, Embase, SinoMed, and Web of Science databases were searched to collect epidemiological characteristics of injury death among elderly over 60 years old in China from January 2000 to December 2020. Random effects meta-analysis was performed to pool injury mortality rate and identify publication bias, with study quality assessed using the AHRQ risk of bias tool. RESULTS: (1) A total of 41 studies with 187 488 subjects were included, covering 125 million elderly. The pooled injury mortality rate was 135.58/105 [95%CI: (113.36 to 162.14)/105], ranking second in the total death cause of the elderly. (2)Subgroup analysis showed that male injury death (146.00/105) was significantly higher than that of females (127.90/105), and overall injury mortality increased exponentially with age (R2 = 0.957), especially in those over 80 years old; the spatial distribution shows that the injury death rate in the central region is higher than that in the east and west and that in the countryside is higher than that in the city; the distribution of death time shows that after entering an aging society (2000-2020) is significantly higher than before (1990-2000). (3) There are more than 12 types of injury death, and the top three are falling, traffic accidents, and suicide. CONCLUSIONS: China's elderly injury death rate is at a high level in the world, with more males than females, especially after the age of 80. There are regional differences. The main types of injury death are falling, traffic, and suicide. During the 14th Five-Year Plan period, for accidental injuries and death, a rectification list for aging and barrier-free environments was issued. PROSPERO REGISTRATION: The systematic review was registered in PROSPERO under protocol number CRD42022359992.


Asunto(s)
Accidentes por Caídas , Accidentes de Tránsito , Macrodatos , Pueblos del Este de Asia , Suicidio Completo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Accidentes de Tránsito/mortalidad , China/epidemiología , Prevalencia , Accidentes por Caídas/mortalidad
6.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047773

RESUMEN

Controlling the tree size of fruit species such as peach can reduce the amount of labor and input needed for orchard management. The phytohormone gibberellin (GA) positively regulates tree size by inducing degradation of the GA signaling repressor DELLA. The N-terminal DELLA domain in this protein is critical for its GA-dependent interaction with the GA receptor GID1 and the resulting degradation of the DELLA protein, which allows for growth-promoting GA signaling. In this study, a DELLA family member, PpeDGYLA, contains a DELLA domain but has amino acid changes in three conserved motifs (DELLA into DGYLA, LEQLE into LERLE, and TVHYNP into AVLYNP). In the absence or presence of GA3, the PpeDGYLA protein did not interact with PpeGID1c and was stable in 35S-PpeDGYLA peach transgenic callus. The overexpression of PpeDGYLA in both polar and Arabidopsis showed an extremely dwarfed phenotype, and these transgenic plants were insensitive to GA3 treatment. PpeDGYLA could interact with PpeARF6-1 and -2, supposed growth-promoting factors. It is suggested that the changes in the DELLA domain of PpeDGYLA may, to some extent, account for the severe dwarf phenotype of poplar and Arabidopsis transgenic plants. In addition, our study showed that the DELLA family contained three clades (DELLA-like, DELLA, and DGLLA). PpeDGYLA clustered into the DGLLA clade and was expressed in all of the analyzed tissues. These results lay the foundation for the further study of the repression of tree size by PpeDGYLA.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Enanismo , Prunus persica , Arabidopsis/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
BMC Genomics ; 23(1): 730, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307759

RESUMEN

BACKGROUND: The rapid growth of annual shoots is detrimental to peach production. While gibberellin (GA) promotes the rapid growth of peach shoots, there is limited information on the identity and expression profiles of GA-metabolism genes for this species. RESULTS: All six GA biosynthetic gene families were identified in the peach genome, and the expression profiles of these family members were determined in peach shoots. The upstream biosynthetic gene families have only one or two members (1 CPS, 2 KSs, and 1 KO), while the downstream gene families have multiple members (7 KAOs, 6 GA20oxs, and 5 GA3oxs). Between the two KS genes, PpKS1 showed a relatively high transcript level in shoots, while PpKS2 was undetectable. Among the seven KAO genes, PpKAO2 was highly expressed in shoots, while PpKAO1 and - 6 were weakly expressed. For the six GA20ox genes, both PpGA20ox1 and - 2 were expressed in shoots, but PpGA20ox1 levels were higher than PpGA20ox2. For the five GA3ox genes, only PpGA3ox1 was highly expressed in shoots. Among these biosynthesis genes, PpGA20ox1 and PpGA3ox1 showed a gradual decrease in transcript level along shoots from top to bottom, and a similar trend was observed in bioactive GA1 and GA4 distribution. Among the GA-deactivation genes, PpGA2ox6 was highly expressed in peach shoots. PpGA2ox1 and - 5 transcripts were relatively lower and showed a similar pattern to PpGA20ox1 and PpGA3ox1 in peach shoots. Overexpression of PpGA20ox1, - 2, or PpGA2ox6 in Arabidopsis or tobacco promoted or depressed the plant growth, respectively, while PpGA3ox1 did not affect plant height. Transient expression of PpGA20ox1 in peach leaves significantly increased bioactive GA1 content. CONCLUSIONS: Our results suggest that PpGA20ox and PpGA2ox expression are closely associated with the distribution of active GA1 and GA4 in peach annual shoots. Our research lays a foundation for future studies into ways to effectively repress the rapid growth of peach shoot.


Asunto(s)
Arabidopsis , Prunus persica , Giberelinas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética
8.
Plant Mol Biol ; 109(1-2): 147-157, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35362935

RESUMEN

KEY MESSAGE: Peach encodes 14 INDETERMINATE DOMAIN (IDD) transcription factors. PpIDD4, -12 and -13 mediated PpDELLA1 binding to the PpGA20ox1 promoter. Each of these three PpIDD-DELLA1 complexes activated transcription of PpGA20ox1. PpTPR1 and -4 interrupted the interaction of PpIDDs with PpDELLA1. The plant growth regulator gibberellin (GA) plays an important role in the rapid growth of annual shoots in peach. Our previous study showed that the peach cultivar 'FenHuaShouXingTao' (FHSXT), a gibberellic acid receptor (gid1) mutant, accumulates active GAs in annual shoot tips. This mutant enhances GA feedback regulation in peach. The results of this study suggested that the PpIDD-DELLA1 complex is the underlying mechanism of GA feedback regulation in peach. Fourteen IDD genes were identified in peach, and three PpIDDs (PpIDD4, -12 and -13, all from group IV) interacted with PpDELLA1, an important component in GA signaling pathway. Truncation, segmentation and site mutation of the promoter of PpGA20ox1 (a GA biosynthesis gene) showed that all three PpIDD proteins recognized the core motif TTGTC. PpIDD4 and -13 mainly bind to site 3, while PpIDD12 binds to site 5 of the PpGA20ox1 promoter. All three PpIDD-DELLA1 complexes activated the PpGA20ox1 promoter-LUC fusion. These data suggested that PpIDDs bridge PpDELLA1 and the promoter of PpGA20ox1, which then activated the transcription of PpGA20ox1. In addition, PpTPR1 and -4 disrupted the interaction of PpIDDs with PpDELLA1. Our research will be helpful for understanding and possibly modifying the regulation of annual shoot growth and GA biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Prunus persica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retroalimentación , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo
9.
Plant Biotechnol J ; 20(5): 886-902, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34919780

RESUMEN

Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.


Asunto(s)
Acuaporinas , Prunus persica , Acuaporinas/genética , Cromosomas , Flores/genética , Frutas/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Prunus persica/genética , Temperatura
10.
Plant J ; 99(5): 988-1002, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31063661

RESUMEN

Cold stress is a major limiting factor in grape (Vitis) productivity. In this study, we characterized a cold-responsive ethylene response factor (ERF) transcription factor, VaERF092, from Amur grape (Vitis amurensis). VaERF092 expression was induced by both low temperatures and the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC), but was suppressed by treatment with the ethylene inhibitor aminoethoxyvinylglycine (AVG) under cold conditions. Ectopic expression of VaERF092 in Arabidopsis thaliana enhanced cold tolerance. Co-expression network analysis of V. vinifera genes indicated that WRKY33 might be a downstream target of VaERF092. This hypothesis was supported by the fact that VaWRKY33 was expressed temporally after VaERF092 expression and could also be induced by cold and ACC, and inhibited by AVG. Yeast one-hybrid, transient ß-glucuronidase (GUS) and dual-luciferase reporter assays provided evidence for an interaction between VaERF092 and a GCC-box element in the VaWRKY33 promoter. In addition, heterologous overexpression of VaWRKY33 in A. thaliana resulted in enhanced cold tolerance. VaERF092- and VaWRKY33 overexpressing grape calli showed lower low-temperature exothermic values than the empty vector (EV) calli, indicating enhanced tolerance to cold. Together, these results indicated that VaERF092 regulates VaWRKY33 through binding to its promoter GCC-box, leading to enhanced cold stress tolerance.


Asunto(s)
Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Vitis/metabolismo , Aclimatación , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Frío , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicina/análogos & derivados , Glicina/metabolismo , Proteínas de Plantas/genética , Análisis de Secuencia , Estrés Fisiológico , Factores de Transcripción/genética , Transcriptoma , Vitis/genética
11.
Plant Cell Rep ; 39(5): 621-634, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32107612

RESUMEN

KEY MESSAGE: Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.


Asunto(s)
Arabidopsis/fisiología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Vitis/genética , Ácido Abscísico/farmacología , Acetatos/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/farmacología , Sequías , Endopeptidasas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxidorreductasas/metabolismo , Oxilipinas/farmacología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo
12.
BMC Genomics ; 20(1): 892, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752682

RESUMEN

BACKGROUND: Ubiquitin ligases (E3) are the enzymes in the ubiquitin/26S proteasome pathway responsible for targeting proteins to the degradation pathway and play major roles in multiple biological activities. However, the E3 family and their functions are yet to be identified in the fruit of peach. RESULTS: In this study, genome-wide identification, classification and characterization of the E3 ligase genes within the genome of peach (Prunus persica) was carried out. In total, 765 E3 (PpE3) ligase genes were identified in the peach genome. The PpE3 ligase genes were divided into eight subfamilies according to the presence of known functional domains. The RBX subfamily was not detected in peach. The PpE3 ligase genes were not randomly distributed among the 8 chromosomes, with a greater concentration on the longer chromosomes. The primary mode of gene duplication of the PpE3 ligase genes was dispersed gene duplication (DSD). Four subgroups of the BTB subfamily never characterized before were newly identified in peach, namely BTBAND, BTBBL, BTBP and BTBAN. The expression patterns of the identified E3 ligase genes in two peach varieties that display different types of fruit softening (melting flesh, MF, and stony hard, SH) were analyzed at 4 different stages of ripening using Illumina technology. Among the 765 PpE3 ligase genes, 515 (67.3%) were expressed (FPKM > 1) in the fruit of either MF or SH during fruit ripening. In same-stage comparisons, 231 differentially expressed genes (DEGs) were identified between the two peach cultivars. The number of DEGs in each subfamily varied. Most DEGs were members of the BTB, F-box, U-box and RING subfamilies. PpE3 ligase genes predicted to be involved in ethylene, auxin, or ABA synthesis or signaling and DNA methylation were differentially regulated. Eight PpE3 ligase genes with possible roles in peach flesh texture and fruit ripening were discussed. CONCLUSIONS: The results of this study provide useful information for further understanding the functional roles of the ubiquitin ligase genes in peach. The findings also provide the first clues that E3 ligase genes may function in the regulation of peach ripening.


Asunto(s)
Frutas/enzimología , Frutas/genética , Prunus persica/enzimología , Prunus persica/genética , Ubiquitina-Proteína Ligasas/genética , Ácido Abscísico/metabolismo , Cromosomas de las Plantas , Etilenos/metabolismo , Frutas/crecimiento & desarrollo , Duplicación de Gen , Perfilación de la Expresión Génica , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Filogenia , Prunus persica/clasificación , Prunus persica/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Plant Mol Biol ; 100(1-2): 95-110, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31011887

RESUMEN

KEY MESSAGE: Overexpression of VaWRKY12, whose nuclear translocation increased under low temperature, enhanced the cold tolerance of Arabidopsis and grapevine calli and significantly increased the expression of antioxidant-related genes. Low temperature causes injuries to buds during winter and to young shoots during early spring, thereby affecting grapevine quality and yield. Understanding the regulatory mechanisms of cold stress responses is essential for the breeding of new grapevine cultivars with excellent cold tolerance. Previous studies indicated that WRKY family genes are induced by low temperature in grapevine, but their function in cold stress responses was not clear. Here, a cold-induced WRKY gene, named VaWRKY12, was cloned from Vitis amurensis, which displays remarkable cold tolerance. An atypical transmembrane (TM) region was found in its C-terminal region. Transient expression assays showed that VaWRKY12 was localized in the nucleus and cytoplasm at normal temperature but only in the nucleus after cold treatment. By contrast, a truncated version of VaWRKY12 without the TM region was found specifically in the nucleus at normal temperature, and its binding activity to tandem W-box elements in yeast was stronger than that of VaWRKY12, indicating that the TM region might affect the location and function of VaWRKY12. Overexpression of VaWRKY12 enhanced the cold tolerance of transformed Arabidopsis and grapevine calli. Transcriptome data revealed that the expression of genes encoding antioxidant enzymes, including peroxidases and glutathione S-transferases, was upregulated after cold treatment in VaWRKY12-overexpressing grapevine calli compared to the control calli. This study identifies candidate target genes as a basis for further studies on the roles of VaWRKY12 in cold stress responses in grapevine.


Asunto(s)
Núcleo Celular/metabolismo , Frío , Proteínas de Plantas/metabolismo , Termotolerancia/fisiología , Factores de Transcripción/metabolismo , Vitis/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas/efectos de los fármacos , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Vitis/genética
14.
J Exp Bot ; 69(7): 1749-1764, 2018 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-29385617

RESUMEN

Grapevine (Vitis vinifera L.) is a widely cultivated fruit crop whose growth and productivity are greatly affected by low temperatures. On the other hand, wild Vitis species represent valuable genetic resources of natural stress tolerance. We have isolated and characterized a MYB-like gene encoding a putative GARP-type transcription factor from Amur grape (V. amurensis) designated as VaAQUILO. AQUILO (AQ) is induced by cold in both V. amurensis and V. vinifera, and its overexpression results in significantly improved tolerance to cold both in transgenic Arabidopsis and in Amur grape calli. In Arabidopsis, the ectopic expression of VaAQ increased antioxidant enzyme activities and up-regulated reactive oxygen species- (ROS) scavenging-related genes. Comparative mRNA sequencing profiling of 35S:VaAQ Arabidopsis plants suggests that this transcription factor is related to phosphate homeostasis like their Arabidopsis closest homologues: AtHRS1 and AtHHO2. However, when a cold stress is imposed, AQ is tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides (RFOs), as observed by the up-regulation of galactinol synthase (GoLS) and raffinose synthase genes. Gene co-expression network (GCN) and cis-regulatory element (CRE) analyses in grapevine indicated AQ as potentially regulating VvGoLS genes. Increased RFO content was confirmed in both transgenic Arabidopsis and Amur grape calli overexpressing VaAQ. Taken together, our results imply that AQ improves cold tolerance through promoting the accumulation of osmoprotectants.


Asunto(s)
Frío , Proteínas de Plantas/genética , Rafinosa/metabolismo , Factores de Transcripción/genética , Vitis/fisiología , Secuencia de Aminoácidos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Estrés Fisiológico , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Vitis/genética
15.
Plant Cell Rep ; 37(8): 1159-1172, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29796948

RESUMEN

KEY MESSAGE: Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes, including COR15A, COR15B, COR413, KIN2, and RD29A. The WRKY family is one of a largest transcription factors in plants, and it is a key component of multiple stress responses. In this study, the drought- and cold-induced WRKY family gene VaWRKY14 was isolated and characterized. Phylogenetic analysis indicated that VaWRKY14 belongs to the WRKY IIa subfamily, of which several members participate in biotic and abiotic stress responses in plants. Fluorescence observation from Arabidopsis mesophyll protoplasts transformed with the VaWRKY14::eGFP fusion vector suggested that VaWRKY14 was localized in the nucleus. The VaWRKY14 in yeast cells did not display any transcriptional activity. The expression of VaWRKY14 could be induced by exogenous phytohormones, including salicylic acid (SA) and abscisic acid (ABA). Overexpression of VaWRKY14 enhanced the drought tolerance of transgenic Arabidopsis. Compared with wild-type Arabidopsis, the VaWRKY14-OE lines exhibited higher water content and antioxidant enzyme activities in leaves after drought treatment. RNA sequencing analysis revealed that several stress-related genes, including COR15A, COR15B, COR413, KIN2, and RD29A, were upregulated in transgenic plants relative to their expression in wild-type Arabidopsis under normal conditions. Several genes (3 upregulated and 49 down-regulated) modulated by VaWRKY14 were also affected by drought stress in wild-type plants. These data suggest that VaWRKY14 responds to drought and cold stresses and that drought tolerance may be enhanced by regulating the expression of stress-related genes in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Sequías , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ácido Salicílico/farmacología
16.
Plant Cell Rep ; 35(3): 655-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26687967

RESUMEN

KEY MESSAGE: VaPAT1 functions as a stress-inducible GRAS gene and enhanced cold, drought and salt tolerance in transgenic Arabidopsis via modulation of the expression of a series of stress-related genes. The plant-specific GRAS transcription factor family regulates diverse processes involved in plant growth, development and stress responses. In this study, VaPAT1, a GRAS gene from Vitis amurensis was isolated and functionally characterized. Sequence alignment and phylogenetic analysis showed that VaPAT1 has a high sequence identity to CmsGRAS and OsCIGR1, which belong to PAT1 branch of GRAS family and function in stress resistance. The transcription of VaPAT1 was markedly induced by stress-related phytohormone abscisic acid (ABA) and various abiotic stress treatments such as cold, drought and high salinity, however, it was repressed by exogenous gibberellic acid (GA) application. Overexpression of VaPAT1 increased the cold, drought and high salinity tolerance in transgenic Arabidopsis. When compared with wild type (WT) seedlings, the VaPAT1-overexpression lines accumulated higher levels of proline and soluble sugar under these stress treatments. Moreover, stress-related genes such as AtSIZ1, AtCBF1, AtATR1/MYB34, AtMYC2, AtCOR15A, AtRD29A and AtRD29B showed higher expression levels in VaPAT1 transgenic lines than in WT Arabidopsis under normal growth conditions. Together, our results indicated that VaPAT1 functions as a positive transcriptional regulator involved in grapevine abiotic stress responses.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Vitis/genética , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/clasificación , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tolerancia a la Sal/genética , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología , Factores de Transcripción/clasificación
17.
China CDC Wkly ; 6(9): 162-167, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495590

RESUMEN

What is already known about this topic?: Previous studies have predominantly examined the micro-level aspects of women aging inflection points, while macro-level research using big data on the inflection points of aging among middle-aged and elderly women in China is currently limited. What is added by this report?: This study determined the inflection ages for physiological, psychological, social, and total dimensions in middle-aged, young elderly, and elderly women [(48.0-53.2) vs. (66.3-70.0) vs. (78.4-81.2) years old]. What are the implications for public health practice?: This study is important for gaining a deeper understanding of aging, identifying patterns of aging, and implementing targeted interventions to promote the overall health of Chinese women.

18.
Int Immunopharmacol ; 127: 111383, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38118315

RESUMEN

Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Defensinas/uso terapéutico , Defensinas/farmacología
19.
J Exp Bot ; 64(16): 4851-62, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24006424

RESUMEN

Chimeras have been used to study the transmission of genetic material and the resulting genetic variation. In this study, two chimeras, TCC and TTC (where the origin of the outer, middle, and inner cell layers, respectively, of the shoot apical meristem is designated by a 'T' for tuber mustard and 'C' for red cabbage), as well as their asexual and sexual progeny, were used to analyse the mechanism and the inheritance of the variation induced by grafting. Asexual TCC progeny were obtained by adventitious shoot regeneration, while TTC sexual progeny were produced by self-crossing. This study observed similar morphological variations in both the asexual and sexual progeny, including changes in leaf shape and the pattern of shoot apical meristem termination. The leaf shape variation was stable, while the rate of shoot apical meristem termination in the TTC progenies decreased from 74.52% to 3.01% after three successive rounds of self-crossing. Specific red cabbage small RNAs were found in the asexually regenerated plants (rTTT) that were not present in TTT, indicating that small RNAs might be transmitted from red cabbage to tuber mustard during grafting. Moreover, in parallel with the variations in phenotype observed in the progeny, some conserved miRNAs were differentially expressed in rTTT and TTT, which correlated with changes in expression of their target genes. These results suggest that the change in small RNA expression induced by grafting may be an important factor for introducing graft-induced genetic variations, providing a basis for further investigating the mechanism of graft-induced genetic variation through epigenetics.


Asunto(s)
Brassica/genética , Quimera/genética , Variación Genética , ARN de Planta/genética , ARN no Traducido/genética , Brassica/metabolismo , Quimera/metabolismo , Cruzamientos Genéticos , Hibridación Genética , ARN de Planta/metabolismo , ARN no Traducido/metabolismo
20.
Plant Sci ; 330: 111630, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36787849

RESUMEN

Peach [Prunus persica (L.) Batsch] annual shoots grow up quickly, which limits the lighting and ventilation of an orchard. Atypical bHLH proteins IBH1(INCREASED LEAF INCLINATION1 BINDING bHLH1) play substantial roles in regulating cell elongation and plant stature. In this study, three PpIBH1s (PpIBH1-1/-2/-3) were identified in peach genome and contain a conserved AS domain and a characteristic HLH domain. The transcript levels of three PpIBH1s positively correlated with internode length, which gradually increased from apex to base along the peach shoots. This positive correlation was further confirmed in apple and poplar shoots. And the PpIBH1s gene were highly expressed in the shoot tips collected from twelve dwarf peach cultivars (gid1c mutants). In tissue-specific expression analysis, PpIBH1-1 are more highly expressed in tissues at the growth-arrested stage than cell-elongating. Transgenic Arabidopsis lines showed that different plant heights depending on the dose of PpIBH1-1 transcripts. And the dwarfing PpIBH1-1 transgenic lines were caused by the shorted cell length. PpIBH1-1 interacted with two bHLH factors (PpACE2 and PpLP1). These results suggested that PpIBH1-1 probably prevents internode elongation of peach shoots in a dose-dependent manner. Our work provided a foundation for properly controlling the growth of annual peach branches.


Asunto(s)
Arabidopsis , Prunus persica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Arabidopsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA