Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(24): e2309841, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38217292

RESUMEN

The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.

2.
Front Chem ; 10: 866415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464231

RESUMEN

Hydrogen energy is considered one of the cleanest and most promising alternatives to fossil fuel because the only combustion product is water. The development of water splitting electrocatalysts with Earth abundance, cost-efficiency, and high performance for large current density industrial applications is vital for H2 production. However, most of the reported catalysts are usually tested within relatively small current densities (< 100 mA cm-2), which is far from satisfactory for industrial applications. In this minireview, we summarize the latest progress of effective non-noble electrocatalysts for large current density hydrogen evolution reaction (HER), whose performance is comparable to that of noble metal-based catalysts. Then the design strategy of intrinsic activities and architecture design are discussed, including self-supporting electrodes to avoid the detachment of active materials, the superaerophobicity and superhydrophilicity to release H2 bubble in time, and the mechanical properties to resist destructive stress. Finally, some views on the further development of high current density HER electrocatalysts are proposed, such as scale up of the synthesis process, in situ characterization to reveal the micro mechanism, and the implementation of catalysts into practical electrolyzers for the commercial application of as-developed catalysts. This review aimed to guide HER catalyst design and make large-scale hydrogen production one step further.

3.
Nanomaterials (Basel) ; 12(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080035

RESUMEN

Two-dimensional (2D) materials have garnered considerable attention due to their advantageous properties, including tunable bandgap, prominent carrier mobility, tunable response and absorption spectral band, and so forth. The above-mentioned properties ensure that 2D materials hold great promise for various high-performance infrared (IR) applications, such as night vision, remote sensing, surveillance, target acquisition, optical communication, etc. Thus, it is of great significance to acquire better insight into IR applications based on 2D materials. In this review, we summarize the recent progress of 2D materials in IR light emission device applications. First, we introduce the background and motivation of the review, then the 2D materials suitable for IR light emission are presented, followed by a comprehensive review of 2D-material-based spontaneous emission and laser applications. Finally, further development directions and challenges are summarized. We believe that milestone investigations of 2D-material-based IR light emission applications will emerge soon, which are beneficial for 2D-material-based nano-device commercialization.

4.
Small Methods ; 5(6): e2100094, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34927912

RESUMEN

Rechargeable aqueous zinc ion batteries have attracted increasing attention as a new energy storage system because of the high ionic conductivity and safe aqueous electrolyte. The spontaneous vanadium dissolution in aqueous electrolytes is one major problem because the water with serious polarity would corrode the crystal structure of vanadium-based cathodes. Here, an in situ artificial cathode electrolyte interphase (CEI) strategy is proposed to kinetically suppress the vanadium dissolution in aqueous zinc ion batteries. The strontium ion is introduced into vanadium oxide layers as a sacrifice guest, which would directly precipitate upon getting out from the vanadium-based cathode to in situ from a CEI coating layer on the surface. This strategy is proven with the help of various technologies, and the remarkable ability of the CEI layer to suppress cathode dissolution is evaluated by multiple electrochemical and chemical methods. As a result, the cathode after CEI conversion exhibits the best recharge capacity retention after open circuit voltage rest for 3 days in comparison with other cathodes. This work reports a general strategy to construct the electrode-electrolyte interface for suppressing vanadium-based cathodes dissolution in aqueous electrolytes and beyond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA