Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Am Chem Soc ; 146(22): 15219-15229, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775440

RESUMEN

Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to ß-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals ß-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate ß-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of ∼16-fold. Facilitated by such a self-activation process, the specially prepared ß-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.

2.
Small ; 20(22): e2308419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102103

RESUMEN

The unsatisfactory oxygen evolution reaction (OER) activity of IrO2 has intensively raised the cost and energy consumption of hydrogen generation from proton exchange membrane water electrolyzers. Here, the acidic OER activity of the rutile IrO2 is significantly enhanced by the incorporation of trivalent metals (e.g., Gd, Nd, and Pr) to increase the Ir-O covalency, while the high-valence (pentavalent or higher) metal incorporation decreases the Ir-O covalency resulting in worse OER activity. Experimental and theoretical analyses indicate that enhanced Ir-O covalency activates lattice oxygen and triggers lattice oxygen-mediated mechanism to enhance OER kinetics, which is verified by the finding of a linear relationship between the natural logarithm of intrinsic activity and Ir-O covalency described by charge transfer energy. By regulating the Ir-O covalency, the obtained Gd-IrO2-δ merely needs 260 mV of overpotential to reach 10 mA cm-2 and shows impressive stability during a 200-h test in 0.5 м H2SO4. This work provides an effective strategy for significantly enhancing the OER activity of the widely used IrO2 electrocatalysts through the rational regulation of Ir-O covalency.

3.
Small ; 20(15): e2308053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009478

RESUMEN

The urgent development of effective electrocatalysts for hydrogen evolution and hydrogen oxidation reaction (HER/HOR) is needed due to the sluggish alkaline hydrogen electrocatalysis. Here, an unusual face-centered cubic (fcc) Ru nanocrystal with favorable HER/HOR performance is offered. Guided by the lower calculated surface energy of fcc Ru than that of hcp Ru in NH3, the carbon-supported fcc Ru electrocatalyst is facilely synthesized in the NH3 reducing atmosphere. The specific HOR kinetic current density of fcc Ru can reach 23.4 mA cmPGM -2, which is around 20 and 21 times greater than that of hexagonal close-packed (hcp) Ru and Pt/C, respectively. Additionally, the HER specific activity is enhanced more than six times in fcc Ru electrocatalyst when compared to Pt/C. Experimental and theoretical analysis indicate that the phase transition from hcp Ru to fcc Ru can negatively shift the d band center, weaken the interaction between catalysts and key intermediates and therefore enhances the HER/HOR kinetics.

4.
Small ; 20(31): e2400381, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38639308

RESUMEN

Pt-based intermetallic compounds (IMCs) are considered as a class of promising fuel cell electrocatalysts, owing to their outstanding intrinsic activity and durability. However, the synthesis of uniformly dispersed IMCs with small sizes presents a formidable challenge during the essential high-temperature annealing process. Herein, a facile and generally applicable VOx matrix confinement strategy is demonstrated for the controllable synthesis of ordered L10-PtM (M = Fe, Co, and Mn) nanoparticles, which not only enhances the dispersion of intermetallic nanocrystals, even at high loading (40 wt%), but also simplifies the oxide removal and acid-washing procedures. Taking intermetallic PtCo as an example, the as-prepared catalyst displays a high-performance oxygen reduction activity (mass activity of 1.52 A mgPt -1) and excellent stability in the membrane electrode assemblies (MEAs) (the ECSA has just 7% decay after durability test). This strategy provides an economical and scalable route for the controlled synthesis of Pt-based intermetallic catalysts, which can pave a way for the commercialization of fuel cell technologies.

5.
Nano Lett ; 23(11): 5187-5193, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37276263

RESUMEN

Intermetallic compounds, featuring atomically ordered structures, have emerged as a class of promising electrocatalysts for fuel cells. However, it remains a formidable challenge to controllably synthesize Pt-based intermetallics during the essential high-temperature annealing process as well as stabilize the nanoparticles (NPs) during the electrocatalytic process. Herein, we demonstrated a Ketjen black supported intermetallic Pt3Ti nanocatalyst coupled with amorphous TiOx species (Pt3Ti-TiOx/KB). The TiOx can not only confine Pt3Ti NPs during the synthesis and electrocatalytic process by a strong metal-oxide interaction but also promote the water dissociation for generating more OH species, thus facilitating the conversion of COad. The Pt3Ti-TiOx/KB showed a significantly enhanced mass activity (2.15 A mgPt-1) for the methanol oxidation reaction, compared with Pt3Ti/KB and Pt/C, and presented an impressively high mass activity retention (∼71%) after the durability test. This work provides an effective strategy of coupling Pt-based intermetallics with functional oxides for developing highly performed electrocatalysts.

6.
Angew Chem Int Ed Engl ; 63(42): e202410494, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39007424

RESUMEN

Anion-reinforced solvation structure favors the formation of inorganic-rich robust electrode-electrolyte interface, which endows fast ion transport and high strength modulus to enable improved electrochemical performance. However, such a unique solvation structure inevitably injures the ionic conductivity of electrolytes and limits the fast-charging performance. Herein, a trade-off in tuning anion-reinforced solvation structure and high ionic conductivity is realized by the entropy-assisted hybrid ester-ether electrolyte. Anion-reinforced solvation sheath with more anions occupying the inner Na+ shell is constructed by introducing the weakly coordinated ether tetrahydrofuran into the commonly used ester-based electrolyte, which merits the accelerated desolvation energy and gradient inorganic-rich electrode-electrolyte interface. The improved ionic conductivity is attributed to the weakly diverse solvation structures induced by entropy effect. These enable the enhanced rate performance and cycling stability of Prussian blue||hard carbon full cells with high electrode mass loading. More importantly, the practical application of the designed electrolyte was further demonstrated by industry-level 18650 cylindrical cells.

7.
Angew Chem Int Ed Engl ; : e202411123, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370396

RESUMEN

Advancing the design of cathode catalysts to significantly maximize platinum utilization and augment the longevity has emerged as a formidable challenge in the field of fuel cells. Herein, we rationally design a high entropy intermetallic compound (HEIC, Pt(FeCoNiCu)3) for catalyzing oxygen reduction reaction (ORR) by an efficient machine learning stategy, where crystal graph convolutional neural networks are employed to expedite the multicomponent design. Based on a dataset generated from first-principles calculations, the model can achieve a high prediction accuracy with mean absolute errors of 0.003 for surface strain and 0.011 eV atom-1 for formation energy. In addition, we identify two chemical features (atomic size difference and mixing enthalpy) as new descriptors to explore advanced ORR catalysts. The carbon supported Pt(FeCoNiCu)3 catalyst with small particle size is successfully synthesized by a freeze-drying-annealing technology, and exhibits ultrahigh mass activity (4.09 A mgPt-1) and specific activity (7.92 mA cm-2). Meanwhile, The catalyst also shows significantly enhanced electrochemical stability which can be ascribed to the sluggish difussion effect in the HEIC structure. Beyond offering a promising low-Pt electrocatalysts for fuel cell cathode, this work offers a new paradigm to rationally design advanced catalysts for energy storage and conversion devices.

8.
Small ; 18(6): e2105664, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854562

RESUMEN

The sluggish kinetics of sulfur conversion in the cathode and the nonuniform deposition of lithium metal at the anode result in severe capacity decay and poor cycle life for lithium-sulfur (Li-S) batteries. Resolving these deficiencies is the most direct route toward achieving practical cells of this chemistry. Herein, a vertically aligned wood-derived carbon plate decorated with Co4 N nanoparticles host (Co4 N/WCP) is proposed that can serve as a host for both the sulfur cathode and the metallic lithium anode. This Co4 N/WCP electrode host drastically enhances the reaction kinetics in the sulfur cathode and homogenizes the electric field at the anode for the uniform lithium plating. Density functional theory calculations confirm the experimental observations that Co4 N/WCP provides a lower energy barrier for the polysulfide redox reaction in the cathode and a low adsorption energy for lithium deposition at the anode. Employing the Co4 N/WCP host at both electrodes in a S@Co4 N/WCP||Li@Co4 N/WCP full cell delivers a specific capacity of 807.9 mAh g-1 after 500 cycles at a 1 C rate. Additional experiments are performed with high areal sulfur loading of 4 mg cm-2 to demonstrate the viability of this strategy for producing practical Li-S cells.


Asunto(s)
Carbono , Litio , Electrodos , Azufre , Madera
9.
Angew Chem Int Ed Engl ; 61(35): e202208086, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35801568

RESUMEN

The development of effective, stable anhydrous proton-conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre-designable structures and tailor-made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two-dimensional COFs via importing planar, rigid triazine units into the center of C3 -symmetric monomers. The developed triazine-core-based COF (denoted as TPT-COF) possesses a well-defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non-triazinyl COFs, even reaching up to 1.27×10-2  S cm-1 at 160 °C. Furthermore, the TPT-COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long-term durability.

10.
Nano Lett ; 19(10): 7457-7463, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31532687

RESUMEN

Perovskite oxides have attracted much attention for enabling the oxygen-evolution reaction (OER) over the past decades. Nevertheless, their poor conductivity is still a barrier hindering their use. Herein, we report a catalyst prototype of Co-based antiperovskite nitrides CuNCo3-xVx (0 ≤ x ≤ 1) to be a highly effective OER electrocatalyst. The synthesized CuNCo3-xVx exhibits greatly enhanced activity and stability toward the OER in alkaline medium. The CuNCo2.4V0.6 shows a mere 235 mV of overpotential to reach 10 mA cm-2, which is comparable to that of Ir/C (232 mV). More importantly, the CuNCo2.4V0.6 is more durable than the conventional Ir/C catalyst. The CuNCo2.4V0.6 catalyst enabled a Zn-air battery to exhibit a cycle life of 143 h with a much higher cell efficiency. The V-substituted CuNCo2.4V0.6 provides a higher content of the desirable Co3+ species in the post-OER catalyst, which ensures a high activity over a long-term operation. With these enhanced effects enabled by the compositional flexibility of CuNCo3-xVx antiperovskite nitride, a feasible strategy for optimizing an electrocatalyst with tunable properties is provided.

11.
Angew Chem Int Ed Engl ; 59(40): 17488-17493, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32578368

RESUMEN

A group of newly reported antiperovskite nitrides Cux In1-x NNi3 (0≤x≤1) with tunable composition are employed as electrocatalysts for the hydrogen evolution reaction (HER). Cu0.4 In0.6 NNi3 shows the highest intrinsic performance among all developed catalysts with an overpotential of merely 42 mV at 10 mA cmgeo -2 . Stability tests at a high current density of 100 mA cmgeo -2 show its super-stable performance with only 7 mV increase in overpotential after more than 60 hours of measurement, surpassing commercial Pt/C (increase of 170 mV). By partial substitution, the derived antiperovskite nitride achieves a smaller kinetic barrier of water dissociation compared to the unsubstituted InNNi3 and CuNNi3 , revealed by first-principle calculations. It is found that the partially substituted Cux In1-x NNi3 possesses a thermal neutral and desirable Gibbs free energy of hydrogen for HER, ascribed to the tailoring of the energy of d-band center arose by the A-site (A=Cu or In) substitution and a resulting optimization of adsorbate interactions.

12.
Chemistry ; 25(19): 5022-5027, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30697831

RESUMEN

To optimize the cycle life and rate performance of lithium-ion batteries (LIBs), ultra-fine Fe2 O3 nanowires with a diameter of approximately 2 nm uniformly anchored on a cross-linked graphene ribbon network are fabricated. The unique three-dimensional structure can effectively improve the electrical conductivity and facilitate ion diffusion, especially cross-plane diffusion. Moreover, Fe2 O3 nanowires on graphene ribbons (Fe2 O3 /GR) are easily accessible for lithium ions compared with the traditional graphene sheets (Fe2 O3 /GS). In addition, the well-developed elastic network can not only undergo the drastic volume expansion during repetitive cycling, but also protect the bulk electrode from further pulverization. As a result, the Fe2 O3 /GR hybrid exhibits high rate and long cycle life Li storage performance (632 mAh g-1 at 5 A g-1 , and 471 mAh g-1 capacity maintained even after 3000 cycles). Especially at high mass loading (≈4 mg cm-2 ), the Fe2 O3 /GR can still deliver higher reversible capacity (223 mAh g-1 even at 2 A g-1 ) compared with the Fe2 O3 /GS (37 mAh g-1 ) for LIBs.

13.
Chemistry ; 25(72): 16683-16691, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31674082

RESUMEN

The cost-efficient ZnMnO3 has attracted increasing attention as a prospective anode candidate for advanced lithium-ion batteries (LIBs) owing to its resourceful abundance, large lithium storage capacity and low operating voltage. However, its practical application is still seriously limited by the modest cycling and rate performances. Herein, a facile design to scalable synthesize unique one-dimensional (1D) mesoporous ZnMnO3 nanorods (ZMO-NRs) composed of nanoscale particles (≈11 nm) is reported. The 1D mesoporous structure and nanoscale building blocks of the ZMO-NRs effectively promote the transport of ions/electrons, accommodate severe volume changes, and expose more active sites for lithium storage. Benefiting from these appealing structural merits, the obtained ZMO-NRs anode exhibits excellent rate behavior (≈454 mAh g-1 at 2 A g-1 ) and ultra-long term cyclic performance (≈949.7 mAh g-1 even over 500 cycles at 0.5 A g-1 ) for efficient lithium storage. Additionally, the LiNi0.8 Co0.1 Mn0.1 O2 //ZMO-NRs full cell presents a practical energy density (≈192.2 Wh kg-1 ) and impressive cyclability with approximately 91 % capacity retention over 110 cycles. This highlights that the ZMO-NRs product is a highly promising high-rate and stable electrode candidate towards advanced LIBs in electronic devices and sustainable energy storage applications.

14.
Chemistry ; 21(30): 10771-7, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26079938

RESUMEN

We have purposefully developed a smart template-engaged methodology to efficiently fabricate well-defined ternary spinel ZnMn2 O4 hollow nanotubes (NTs). The procedure involves coating carbon nanotubes (CNTs) with ZnMn2 O4 nanosheets (NSs), followed by heating at high temperature in air to oxidize the CNT template. Physicochemical characterization demonstrated that the formed ZnMn2 O4 NTs with a diameter of approximately 100 nm were composed of assembled NSs and/or nanoparticles (NPs) as building blocks and possessed numerous nanopores of several nanometers in the sidewall of the NTs. In favor of the intrinsic structural advantages, the resulting ZnMn2 O4 NTs exhibited superior electrochemical lithium-storage performance with a large capacity, good rate behavior, and excellent cyclability when evaluated as promising anodes for lithium-ion batteries (LIBs). The remarkable electrochemical performance was rationally ascribed to the appealing one-dimensional (1D) porous hollow tubular architecture with nanoscale subunits and mesopores in the sidewalls, which decreased the diffusion length for the Li(+) ions, improved the kinetic process, and enhanced the structural integrity with sufficient void space to tolerate the volume variation during Li(+) -ion insertion/extraction. These results highlight the promising application of 1D ZnMn2 O4 NTs as anodes for high-performance LIBs.

15.
Chemistry ; 21(3): 1262-8, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25387890

RESUMEN

In this work, we put forward a facile yet efficient room-temperature synthetic methodology for the smart fabrication of mesoporous nanocrystalline ZnMn2O4 in macro-quality from the birnessite-type MnO2 phase. A plausible reduction/ion exchange/re-crystallization mechanism is tentatively proposed herein for the scalable synthesis of the spinel phase ZnMn2O4. When utilized as a high-performance anode for advanced Li-ion battery (LIB) application, the as-synthesized nanocrystalline ZnMn2O4 delivered an excellent discharge capacity of approximately 1288 mAh g(-1) on the first cycle at a current density of 400 mA g(-1), and exhibited an outstanding cycling durability, rate capability, and coulombic efficiency, benefiting from its mesoporous and nanoscale structure, which strongly highlighted its great potential in next-generation LIBs. Furthermore, the strategy developed here is very simple and of great importance for large-scale industrial production.

16.
Nanotechnology ; 26(14): 145401, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25785913

RESUMEN

In this study, we rationally designed a rapid, low-temperature yet general synthetic methodology for the first time, involving in situ growth of two-dimensional (2D) birnessite-type MnO2 nanosheets (NSs) upon each carbon nanotube (CNT), and we designed the subsequent phase transformation into untrathin mesoporous ZnMn2O4 NSs with a thickness of ∼2-3 nm at room temperature to efficiently fabricate heterostructured core-shell ZnMn2O4 NSs@CNT coaxial nanocables with well-dispersed and tunable ZnMn2O4 loading. The underlying insights into the low-temperature formation mechanism of the unique core-shell hybrid nanoarchitectures were tentatively proposed here. When utilized as a high-performance anode for advanced LIBs, the resultant core-shell ZnMn2O4@CNTs' coaxial nanocables (∼84.5 wt.% loading) exhibited large specific discharge capacity (∼1033 mAh g(-1)), good rate capability (∼528 mAh g(-1)) and excellent cycling stability (average capacity degradation of only ∼5.2% per cycle) at a high current rate of 1224 mA g(-1), originating from the distinct core-shell synergetic effect of fast electronic delivery and from the large electrode/electrolyte contacting surfaces/interfaces provided by three-dimensional entangling coaxial CNT-based nanonetwork topology.

17.
Adv Mater ; 36(11): e2310623, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088907

RESUMEN

The practical implementation of aqueous zinc-ion batteries (AZIBs) encounters challenges such as dendrite growth, parasitic reactions, and severe decay in battery performance under harsh environments. Here, a novel hydrated eutectic electrolyte (HEE) composed of Zn(ClO4 )2 ·6H2 O, ethylene glycol (EG), and InCl3 solution is introduced to effectively extend the lifespan of AZIBs over a wide temperature range from -50 to 50 °C. Molecular dynamics simulations and spectroscopy analysis demonstrate that the H2 O molecules are confined within the liquid eutectic network through dual-interaction, involving coordination with Zn2+ and hydrogen bonding with EG, thus weakening the activity of free water and extending the electrochemical window. Importantly, cryo-transmission electron microscopy and spectroscopy techniques reveal that HEE in situ forms a zincophobic/zincophilic bilayer interphase by the dissociation-reduction of eutectic molecules. Specifically, the zincophilic interphase reduces the energy barrier for Zn nucleation, promoting uniform Zn deposition, while the zincophobic interphase prevents active water from contacting the Zn surface, thus inhibiting the side reactions. Furthermore, the relationships between the structural evolution of the liquid eutectic network and interfacial chemistry at electrode/electrolyte interphase are further discussed in this work. The scalability of this design strategy can bring benefits to AZIBs operating over a wide temperature range.

18.
ACS Appl Mater Interfaces ; 16(27): 35033-35042, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38938082

RESUMEN

Organic material holds immense potential for Li-ion batteries (LIBs) due to their eco-friendly nature, high structural designability, abundant sources, and high theoretical capacity. However, the limited redox-active sites, low electronic conductivity, sluggish ionic diffusion, and high solubility hinder their practical application. Here, we reported the use of a linear polymer called poly(naphthalenetetracarboxylic dianhydride-pyrene-4,5,9,10-tetraone)-coated graphene nanosheets (NPT/rGO) as a cathode material for LIBs. The NPT polymer has a rotation angle of approximately 63° between each plane, which helps in exposing the active sites and preventing structural pulverization during cycling. The highly conjugated skeleton of the polymer, along with graphene, forms a synergistic effect through a π-π interaction. This combination enhances the conductivity and restricts solubility. Additionally, the linear structure of NPT and the two-dimensional rGO substrates work together to enhance charge transfer and ion diffusion rates, resulting in faster reaction kinetics. Consequently, NPT/rGO exhibits excellent electrochemical performance in terms of high capacity, superior cyclic stability, and good rate capability for LIBs. Moreover, through the combination of experimental investigations and theoretical simulations, a multiple electron reaction mechanism, an efficient Li-ion storage behavior, and a reversible dynamic evolution have been revealed. This study introduces a rational molecular design approach to enhance the electrochemical performance of polyimide derivatives, thereby contributing to the advancement of cutting-edge organic electrode materials for LIBs.

19.
Adv Mater ; 36(24): e2400642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38428042

RESUMEN

Achieving reversible insertion/extraction in most cathodes for aqueous aluminum ion batteries (AAIBs) is a significant challenge due to the high charge density of Al3+ and strong electrostatic interactions. Organic materials facilitate the hosting of multivalent carriers and rapid ions diffusion through the rearrangement of chemical bonds. Here, a bipolar conjugated poly(2,3-diaminophenazine) (PDAP) on carbon substrates prepared via a straightforward electropolymerization method is introduced as cathode for AAIBs. The integration of n-type and p-type active units endow PDAP with an increased number of sites for ions interaction. The long-range conjugated skeleton enhances electron delocalization and collaborates with carbon to ensure high conductivity. Moreover, the strong intermolecular interactions including π-π interaction and hydrogen bonding significantly enhance its stability. Consequently, the Al//PDAP battery exhibits a large capacity of 338 mAh g-1 with long lifespan and high-rate capability. It consistently demonstrates exceptional electrochemical performances even under extreme conditions with capacities of 155 and 348 mAh g-1 at -20 and 45 °C, respectively. In/ex situ spectroscopy comprehensively elucidates its cation/anion (Al3+/H3O+ and ClO4 -) storage with 3-electron transfer in dual electroactive centers (C═N and -NH-). This study presents a promising strategy for constructing high-performance organic cathode for AAIBs over a wide temperature range.

20.
ACS Nano ; 18(20): 12981-12993, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717035

RESUMEN

Aqueous aluminum-ion batteries (AAIBs) are considered as a promising alternative to lithium-ion batteries due to their large theoretical capacity, high safety, and low cost. However, the uneven deposition, hydrogen evolution reaction (HER), and corrosion during cycling impede the development of AAIBs, especially under a harsh environment. Here, a hydrated eutectic electrolyte (AATH40) composed of Al(OTf)3, acetonitrile (AN), triethyl phosphate (TEP), and H2O was designed to improve the electrochemical performance of AAIBs in a wide temperature range. The combination of molecular dynamics simulations and spectroscopy analysis reveals that AATH40 has a less-water-solvated structure [Al(AN)2(TEP)(OTf)2(H2O)]3+, which effectively inhibits side reactions, decreases the freezing point, and extends the electrochemical window of the electrolyte. Furthermore, the formation of a solid electrolyte interface, which effectively inhibits HER and corrosion, has been demonstrated by X-ray photoelectron spectroscopy, X-ray diffraction tests, and in situ differential electrochemical mass spectrometry. Additionally, operando synchrotron Fourier transform infrared spectroscopy and electrochemical quartz crystal microbalance with dissipation monitoring reveal a three-electron storage mechanism for the Al//polyaniline full cells. Consequently, AAIBs with this electrolyte exhibit improved cycling stability within the temperature range of -10-50 °C. This present study introduces a promising methodology for designing electrolytes suitable for low-cost, safe, and stable AAIBs over a wide temperature range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA