Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 603(7903): 907-912, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296854

RESUMEN

The microbiota modulates gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17A (TH17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits TH17 cell differentiation1. Although it was suggested that gut-residing bacteria produce 3-oxoLCA, the identity of such bacteria was unknown, and it was unclear whether 3-oxoLCA and other immunomodulatory bile acids are associated with inflammatory pathologies in humans. Here we identify human gut bacteria and corresponding enzymes that convert the secondary bile acid lithocholic acid into 3-oxoLCA as well as the abundant gut metabolite isolithocholic acid (isoLCA). Similar to 3-oxoLCA, isoLCA suppressed TH17 cell differentiation by inhibiting retinoic acid receptor-related orphan nuclear receptor-γt, a key TH17-cell-promoting transcription factor. The levels of both 3-oxoLCA and isoLCA and the 3α-hydroxysteroid dehydrogenase genes that are required for their biosynthesis were significantly reduced in patients with inflammatory bowel disease. Moreover, the levels of these bile acids were inversely correlated with the expression of TH17-cell-associated genes. Overall, our data suggest that bacterially produced bile acids inhibit TH17 cell function, an activity that may be relevant to the pathophysiology of inflammatory disorders such as inflammatory bowel disease.


Asunto(s)
Bacterias , Ácidos y Sales Biliares , Enfermedades Inflamatorias del Intestino , Bacterias/metabolismo , Diferenciación Celular , Tracto Gastrointestinal/microbiología , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Interleucina-17 , Ácido Litocólico/metabolismo , Ácido Litocólico/farmacología , Células Th17
2.
Nature ; 572(7770): 511-515, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435056

RESUMEN

Lithium metal anodes offer high theoretical capacities (3,860 milliampere-hours per gram)1, but rechargeable batteries built with such anodes suffer from dendrite growth and low Coulombic efficiency (the ratio of charge output to charge input), preventing their commercial adoption2,3. The formation of inactive ('dead') lithium- which consists of both (electro)chemically formed Li+ compounds in the solid electrolyte interphase and electrically isolated unreacted metallic Li0 (refs 4,5)-causes capacity loss and safety hazards. Quantitatively distinguishing between Li+ in components of the solid electrolyte interphase and unreacted metallic Li0 has not been possible, owing to the lack of effective diagnostic tools. Optical microscopy6, in situ environmental transmission electron microscopy7,8, X-ray microtomography9 and magnetic resonance imaging10 provide a morphological perspective with little chemical information. Nuclear magnetic resonance11, X-ray photoelectron spectroscopy12 and cryogenic transmission electron microscopy13,14 can distinguish between Li+ in the solid electrolyte interphase and metallic Li0, but their detection ranges are limited to surfaces or local regions. Here we establish the analytical method of titration gas chromatography to quantify the contribution of unreacted metallic Li0 to the total amount of inactive lithium. We identify the unreacted metallic Li0, not the (electro)chemically formed Li+ in the solid electrolyte interphase, as the dominant source of inactive lithium and capacity loss. By coupling the unreacted metallic Li0 content to observations of its local microstructure and nanostructure by cryogenic electron microscopy (both scanning and transmission), we also establish the formation mechanism of inactive lithium in different types of electrolytes and determine the underlying cause of low Coulombic efficiency in plating and stripping (the charge and discharge processes, respectively, in a full cell) of lithium metal anodes. We propose strategies for making lithium plating and stripping more efficient so that lithium metal anodes can be used for next-generation high-energy batteries.

3.
Nano Lett ; 24(7): 2218-2225, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38277614

RESUMEN

Significant untapped energy exists within low-grade heat sources and salinity gradients. Traditional nanofluidic membranes exhibit inherent limitations, including low ion selectivity, high internal resistance, reliance on nonrenewable resources, and instability in aqueous solutions, invariably constraining their practical application. Here, an innovative composite membrane-based nanofluidic system is reported, involving the strategy of integrating tailor-modified bacterial nanofibers with boron nitride nanosheets, enabling high surface charge densities while maintaining a delicate balance between ion selectivity and permeability, ultimately facilitating effective thermo-osmotic energy harvesting. The device exhibits an impressive output power density of 10 W m-2 with artificial seawater and river water at a 50 K temperature gradient. Furthermore, it demonstrates robust power density stability under prolonged exposure to salinity gradients or even at elevated temperatures. This work opens new avenues for the development of nanofluidic systems utilizing composite materials and presents promising solutions for low-grade heat recovery and osmotic energy harvesting.

4.
Nano Lett ; 24(25): 7557-7563, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38758657

RESUMEN

Ultrathin topological insulator membranes are building blocks of exotic quantum matter. However, traditional epitaxy of these materials does not facilitate stacking in arbitrary orders, while mechanical exfoliation from bulk crystals is also challenging due to the non-negligible interlayer coupling therein. Here we liberate millimeter-scale films of the topological insulator Bi2Se3, grown by molecular beam epitaxy, down to 3 quintuple layers. We characterize the preservation of the topological surface states and quantum well states in transferred Bi2Se3 films using angle-resolved photoemission spectroscopy. Leveraging the photon-energy-dependent surface sensitivity, the photoemission spectra taken with 6 and 21.2 eV photons reveal a transfer-induced migration of the topological surface states from the top to the inner layers. By establishing clear electronic structures of the transferred films and unveiling the wave function relocation of the topological surface states, our work lays the physics foundation crucial for the future fabrication of artificially stacked topological materials with single-layer precision.

5.
Plant Biotechnol J ; 22(7): 1897-1912, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386569

RESUMEN

Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.


Asunto(s)
Brassica napus , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Oryza/genética , Oryza/crecimiento & desarrollo , Fitomejoramiento/métodos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo
6.
Magn Reson Med ; 91(6): 2358-2373, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38193277

RESUMEN

PURPOSE: Spoke pulses improve excitation homogeneity in parallel-transmit MRI. We propose an efficient global optimization algorithm, Bayesian optimization of gradient trajectory (BOGAT), for single-slice and simultaneous multislice imaging. THEORY AND METHODS: BOGAT adds an outer loop to optimize kT-space positions. For each position, the RF coefficients are optimized (e.g., with magnitude least squares) and the cost function evaluated. Bayesian optimization progressively estimates the cost function. It automatically chooses the kT-space positions to sample, to achieve fast convergence, often coming close to the globally optimal spoke positions. We investigated the typical features of spokes cost functions by a grid search with field maps comprising 85 slabs from 14 volunteers. We tested BOGAT in this database, and prospectively in a phantom and in vivo. We compared the vendor-provided Fourier transform approach with the same magnitude least squares RF optimizer. RESULTS: The cost function is nonconvex and seen empirically to be piecewise smooth with discontinuities where the underlying RF optimum changes sharply. BOGAT converged to within 10% of the global minimum cost within 30 iterations in 93% of slices in our database. BOGAT achieved up to 56% lower flip angle RMS error (RMSE) or 55% lower pulse energy in phantoms versus the Fourier transform approach, and up to 30% lower RMSE and 29% lower energy in vivo with 7.8 s extra computation. CONCLUSION: BOGAT efficiently estimated near-global optimum spoke positions for the two-spoke tests, reducing flip-angle RMSE and/or pulse energy in a computation time (˜10 s), which is suitable for online optimization.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Teorema de Bayes , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Análisis de los Mínimos Cuadrados , Encéfalo/diagnóstico por imagen
7.
J Med Virol ; 96(6): e29765, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924102

RESUMEN

This study aims to investigate the significant relationship between serum heavy metals (lead [Pb], cadmium [Cd], mercury [Hg]) and the risk of herpes simplex virus type 1 (HSV-1) infection. Data were derived from the National Health and Nutrition Examination Survey (NHANES) conducted in the United States from 2007 to 2016. This nationally representative survey, conducted by the National Center for Health Statistics, assessed the health status of participants through interviews, physical examinations, and laboratory tests. After excluding participants lacking serum Pb, Cd, and Hg data, as well as those missing HSV-1 testing data and pregnant women, the analysis included 13 772 participants, among whom 3363 were adolescents. A survey-weighted multivariate logistic regression model was used to evaluate the association between heavy metal exposure and the risk of HSV-1 infection, and to explore the dose-response relationship between them. In adults and adolescents, serum concentrations of Pb and Cd were higher in those infected with HSV-1 than in those not infected. However, an increase in serum Hg concentration was observed only in infected adolescents. After adjusting for potential confounders, elevated serum Pb and Cd concentrations in adults were associated with an increased risk of HSV-1 infection. Higher serum Pb and Cd concentrations were associated with an increased risk of HSV-2 infection, irrespective of HSV-1 infection status. In adults, serum concentrations of Pb and Hg showed an approximately linear relationship with HSV-1 infection risk (p for nonlinearity > 0.05), whereas the dose-response relationship between serum Cd concentration and HSV-1 infection was nonlinear (p for nonlinearity = 0.004). In adolescents, serum concentrations of heavy metals (Pb, Cd, Hg) showed an approximately linear relationship with HSV-1 infection (p for nonlinearity > 0.05). Furthermore, the study examined the relationship between serum heavy metal levels and the risk of HSV-1 infection across different genders, races, income levels, weight statuses, and immune statuses. In conclusion, there is a significant association between serum heavy metal concentrations and HSV-1 infection, which warrants further investigation into the causal relationship between them.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Metales Pesados , Encuestas Nutricionales , Humanos , Femenino , Masculino , Estudios Transversales , Adolescente , Metales Pesados/sangre , Metales Pesados/efectos adversos , Herpes Simple/epidemiología , Herpes Simple/sangre , Adulto , Adulto Joven , Persona de Mediana Edad , Estados Unidos/epidemiología , Cadmio/sangre , Cadmio/efectos adversos , Plomo/sangre , Mercurio/sangre , Niño , Factores de Riesgo , Exposición a Riesgos Ambientales/efectos adversos , Anciano
8.
Pharmacol Res ; 206: 107268, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908614

RESUMEN

Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.

9.
Nanotechnology ; 35(36)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38861958

RESUMEN

Solid electrolyte-gated transistors exhibit improved chemical stability and can fulfill the requirements of microelectronic packaging. Typically, metal oxide semiconductors are employed as channel materials. However, the extrinsic electron transport properties of these oxides, which are often prone to defects, pose limitations on the overall electrical performance. Achieving excellent repeatability and stability of transistors through the solution process remains a challenging task. In this study, we propose the utilization of a solution-based method to fabricate an In2O3/ZnO heterojunction structure, enabling the development of efficient multifunctional optoelectronic devices. The heterojunction's upper and lower interfaces induce energy band bending, resulting in the accumulation of a large number of electrons and a significant enhancement in transistor mobility. To mimic synaptic plasticity responses to electrical and optical stimuli, we utilize Li+-doped high-k ZrOxthin films as a solid electrolyte in the device. Notably, the heterojunction transistor-based convolutional neural network achieves a high accuracy rate of 93% in recognizing handwritten digits. Moreover, our research involves the simulation of a typical sensory neuron, specifically a nociceptor, within our synaptic transistor. This research offers a novel avenue for the advancement of cost-effective three-terminal thin-film transistors tailored for neuromorphic applications.

10.
Eur J Pediatr ; 183(2): 581-590, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37851084

RESUMEN

This study aims to assess the role of methotrexate-related gene polymorphisms in children with acute lymphoblastic leukemia (ALL) during high-dose methotrexate (HD-MTX) therapy and to explore their effects on serum metabolites before and after HD-MTX treatment. The MTHFR 677C>T, MTHFR 1298A>C, ABCB1 3435C>T, and GSTP1 313A>G genotypes of 189 children with ALL who received chemotherapy with the CCCG-ALL-2020 regimen from January 2020 to April 2023 were analyzed, and toxic effects were reported according to the Common Terminology Criteria for Adverse Events (CTCAE, version 5.0). Fasting peripheral blood serum samples were collected from 27 children before and after HD-MTX treatment, and plasma metabolites were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS). The results of univariate and multivariate analyses showed that MTHFR 677C>T and ABCB1 3435 C>T gene polymorphisms were associated with the delayed MTX clearance (P < 0.05) and lower platelet count after treatment in children with MTHFR 677 mutation compared with wild-type ones (P < 0.05), and pure mutations in ABCB1 3435 were associated with higher serum creatinine levels (P < 0.05). No significant association was identified between MTHFR 677C>T, MTHFR 1298A>C, ABCB1 3435 C>T, and GSTP1 313A>G genes and hepatotoxicity or nephrotoxicity (P > 0.05). However, the serum metabolomic analysis indicated that the presence of the MTHFR 677C > T gene polymorphism could potentially contribute to delayed MTX clearance by influencing L-phenylalanine metabolism, leading to the occurrence of related toxic side effects. CONCLUSION: MTHFR 677C>T and ABCB1 3435 C>T predicted the risk of delayed MTX clearance during HD-MTX treatment in children with ALL. Serum L-phenylalanine levels were significantly elevated after HD-MTX treatment in children with the MTHFR 677C>T mutation gene. TRIAL REGISTRATION: This study was registered at the Chinese Clinical Trial Registry (registration number: ChiCTR2000035264; registration: 2020/08/05; https://www.chictr.org.cn/ ). WHAT IS KNOWN: • MTX-related genes play an important role in MTX pharmacokinetics and toxicity, but results from different studies are inconsistent and the mechanisms involved are not clear. WHAT IS NEW: • Characteristics, prognosis, polymorphisms of MTX-related genes, and metabolite changes were comprehensively evaluated in children treated with HD-MTX chemotherapy. • Analysis revealed that both heterozygous and pure mutations in MTHFR 677C>T resulted in a significantly increased risk of delayed MTX clearance, and that L-phenylalanine has the potential to serve as a predictive marker for the metabolic effects of the MTHFR 677C>T polymorphism.


Asunto(s)
Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Metotrexato/efectos adversos , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genotipo , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Fenilalanina , Polimorfismo de Nucleótido Simple
11.
Child Dev ; 95(1): 114-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37417935

RESUMEN

The present study examined relations between concern for mianzi, or the social perception of one's prestige and standing in the group, and adjustment in Chinese adolescents. Participants were seventh- and ninth-grade students in rural and urban regions of China (n = 794, Mage = 14 years). Data were obtained from multiple sources including peer assessments, teacher ratings, self-reports, and school records. The results showed that concern for mianzi was associated with social competence, leadership, academic achievement, as well as aggression and mixed peer relationships in rural adolescents. In contrast, concern for mianzi was associated with comprehensive social, school, and psychological adjustment problems in urban adolescents. The results indicate the role of context in shaping the relations between adolescents' concern for mianzi and adjustment.


Asunto(s)
Éxito Académico , Ajuste Social , Humanos , Adolescente , Ajuste Emocional , Instituciones Académicas , Escolaridad , Grupo Paritario , China
12.
Ecotoxicol Environ Saf ; 274: 116232, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493701

RESUMEN

Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.


Asunto(s)
Medicamentos Herbarios Chinos , Peróxido de Hidrógeno , Lycium , Humanos , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno/metabolismo , Material Particulado/metabolismo , Senescencia Celular
13.
Angew Chem Int Ed Engl ; 63(29): e202405593, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38716660

RESUMEN

For zinc-metal batteries, the instable chemistry at Zn/electrolyte interphasial region results in severe hydrogen evolution reaction (HER) and dendrite growth, significantly impairing Zn anode reversibility. Moreover, an often-overlooked aspect is this instability can be further exacerbated by the interaction with dissolved cathode species in full batteries. Here, inspired by sustained-release drug technology, an indium-chelated resin protective layer (Chelex-In), incorporating a sustained-release mechanism for indium, is developed on Zn surface, stabilizing the anode/electrolyte interphase to ensure reversible Zn plating/stripping performance throughout the entire lifespan of Zn//V2O5 batteries. The sustained-release indium onto Zn electrode promotes a persistent anticatalytic effect against HER and fosters uniform heterogeneous Zn nucleation. Meanwhile, on the electrolyte side, the residual resin matrix with immobilized iminodiacetates anions can also repel detrimental anions (SO4 2- and polyoxovanadate ions dissolved from V2O5 cathode) outside the electric double layer. This dual synergetic regulation on both electrode and electrolyte sides culminates a more stable interphasial environment, effectively enhancing Zn anode reversibility in practical high-areal-capacity full battery systems. Consequently, the bio-inspired Chelex-In protective layer enables an ultralong lifespan of Zn anode over 2800 h, which is also successfully demonstrated in ultrahigh areal capacity Zn//V2O5 full batteries (4.79 mAh cm-2).

14.
J Am Chem Soc ; 145(17): 9624-9633, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37071778

RESUMEN

Sulfurized polyacrylonitrile (SPAN) represents a class of sulfur-bonded polymers, which have shown thousands of stable cycles as a cathode in lithium-sulfur batteries. However, the exact molecular structure and its electrochemical reaction mechanism remain unclear. Most significantly, SPAN shows an over 25% 1st cycle irreversible capacity loss before exhibiting perfect reversibility for subsequent cycles. Here, with a SPAN thin-film platform and an array of analytical tools, we show that the SPAN capacity loss is associated with intramolecular dehydrogenation along with the loss of sulfur. This results in an increase in the aromaticity of the structure, which is corroborated by a >100× increase in electronic conductivity. We also discovered that the conductive carbon additive in the cathode is instrumental in driving the reaction to completion. Based on the proposed mechanism, we have developed a synthesis procedure to eliminate more than 50% of the irreversible capacity loss. Our insights into the reaction mechanism provide a blueprint for the design of high-performance sulfurized polymer cathode materials.

15.
Expert Rev Mol Med ; 25: e21, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37332167

RESUMEN

Breast cancer is a high-risk disease with a high mortality rate among women. Chemotherapy plays an important role in the treatment of breast cancer. However, chemotherapy eventually results in tumours that are resistant to drugs. In recent years, many studies have revealed that the activation of Wnt/ß-catenin signalling is crucial for the emergence and growth of breast tumours as well as the development of drug resistance. Additionally, drugs that target this pathway can reverse drug resistance in breast cancer therapy. Traditional Chinese medicine has the properties of multi-target and tenderness. Therefore, integrating traditional Chinese medicine and modern medicine into chemotherapy provides a new strategy for reversing the drug resistance of breast tumours. This paper mainly reviews the possible mechanism of Wnt/ß-catenin in promoting the process of breast tumour drug resistance, and the progress of alkaloids extracted from traditional Chinese medicine in the targeting of this pathway in order to reverse the drug resistance of breast cancer.


Asunto(s)
Alcaloides , Neoplasias de la Mama , Vía de Señalización Wnt , Femenino , Humanos , Alcaloides/farmacología , Alcaloides/uso terapéutico , beta Catenina/metabolismo , beta Catenina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Resistencia a Medicamentos , Medicina Tradicional China
16.
Small ; 19(39): e2300802, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37259273

RESUMEN

Stable cycling of LiCoO2 (LCO) cathode at high voltage is extremely challenging due to the notable structural instability in deeply delithiated states. Here, using the sol-gel coating method, LCO materials (LMP-LCO) are obtained with bulk Mg-doping and surface LiMgPO4 /Li3 PO4 (LMP/LPO) coating. The experimental results suggest that the simultaneous modification in the bulk and at the surface is demonstrated to be highly effective in improving the high-voltage performance of LCO. LMP-LCO cathodes deliver 149.8 mAh g-1 @4.60 V and 146.1 mAh g-1 @4.65 V after 200 cycles at 1 C. For higher cut-off voltages, 4.70 and 4.80 V, LMP-LCO cathodes still achieve 144.9 mAh g-1 after 150 cycles and 136.8 mAh g-1 after 100 cycles at 1 C, respectively. Bulk Mg-dopants enhance the ionicity of CoO bond by tailoring the band centers of Co 3d and O 2p, promoting stable redox on O2- , and thus enhancing stable cycling at high cut-off voltages. Meanwhile, LMP/LPO surface coating suppresses detrimental surface side reactions while allowing facile Li-ion diffusion. The mechanism of high-voltage cycling stability is investigated by combining experimental characterizations and theoretical calculations. This study proposes a strategy of surface-to-bulk simultaneous modification to achieve superior structural stability at high voltages.

17.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686178

RESUMEN

Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. Tritici (Pst). It significantly impacts wheat yields in Xinjiang, China. Breeding and promoting disease-resistant cultivars carrying disease-resistance genes remains the most cost-effective strategy with which to control the disease. In this study, 17 molecular markers were used to identify Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, Yr26, Yr41, Yr44, and Yr50 in 82 wheat cultivars from Xinjiang. According to the differences in SNP loci, the KASP markers for Yr30, Yr52, Yr78, Yr80, and Yr81 were designed and detected in the same set of 82 wheat cultivars. The results showed that there was a diverse distribution of Yr genes across all wheat cultivars in Xinjiang, and the detection rates of Yr5, Yr15, Yr17, Yr26, Yr41, and Yr50 were the highest, ranging from 74.39% to 98.78%. In addition, Yr5 and Yr15 were prevalent in spring wheat cultivars, with detection rates of 100% and 97.56%, respectively. A substantial 85.37% of wheat cultivars carried at least six or more different combinations of Yr genes. The cultivar Xindong No.15 exhibited the remarkable presence of 11 targeted Yr genes. The pedigree analysis results showed that 33.33% of Xinjiang wheat cultivars shared similar parentage, potentially leading to a loss of resistance against Pst. The results clarified the Yr gene distribution of the Xinjiang wheat cultivars and screened out varieties with a high resistance against Pst.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Biomarcadores , China , Resistencia a la Enfermedad/genética , Puccinia
18.
Molecules ; 28(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067607

RESUMEN

The construction of hybrid junctions remains challenging for the rational design of visible light-driven photocatalysts. Herein, In2S3/CdS/N-rGO hybrid nanosheets were successfully prepared via a one-step pyrolysis method using deep eutectic solvents as precursors. Benefiting from the surfactant-free pyrolysis method, the obtained ultrathin hybrid nanosheets assemble into stable three-dimensional self-standing superstructures. The tremella-like structure of hybrid In2S3/N-rGO exhibits excellent photocatalytic hydrogen production performance. The hydrogen evolution rate is 10.9 mmol·g-1·h-1, which is greatly superior to CdS/N-rGO (3.7 mmol·g-1·h-1) and In2S3/N-rGO (2.6 mmol·g-1·h-1). This work provides more opportunities for the rational design and fabrication of hybrid ultrathin nanosheets for broad catalytic applications in sustainable energy and the environment.

19.
J Sci Food Agric ; 103(2): 837-845, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044335

RESUMEN

BACKGROUND: Chrysanthemum is one of the most important and popular ornamentals over the world. Chrysanthemum drink is a type of traditional healthy drink like Chinese tea. Owing to the differences in the chemical compositions, different chrysanthemum varieties have different medicinal effects on human health. Thus, the identification of different chrysanthemum varieties is very important and necessary. This study aims to distinguish seven chrysanthemum varieties that are widely used in China. First, total lipids were obtained from chrysanthemums. After that, lipid profiles were characterized using ultra-high-performance liquid chromatography hyphenated with a Q Exactive™ high resolution-accurate-mass mass spectrometer. RESULTS: A total of 163 lipid molecular species from 17 types of lipid classes in seven varieties of chrysanthemums were determined. Principal component analysis indicated that three lipid molecules, lysophosphatidylethanolamine(18:2) (LPE(18:2)), LPE(16:0), and phosphatidic acid(18:2/18:3) (variable importance in projection >3, P < 0.001), can be used as potential biomarkers to distinguish seven chrysanthemum varieties. Hierarchical cluster analysis showed that the lipid molecular profiles of 'Gongju' were most similar to 'Jinzijianju', followed by 'Huaibaiju', 'Boju', 'Hangbaiju', 'Chuju', and 'Fubaiju'. CONCLUSION: This comprehensive analysis provided a new method to identify chrysanthemum varieties through the perspective of lipidomics combined with chemometrics. © 2022 Society of Chemical Industry.


Asunto(s)
Chrysanthemum , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Chrysanthemum/química , Cromatografía Líquida de Alta Presión/métodos , Lipidómica , Lípidos
20.
Angew Chem Int Ed Engl ; 62(5): e202215455, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36445794

RESUMEN

Remote functionalization involving a fascinating chain-walking process has emerged as a powerful strategy for the rapid access to value-added functional molecules from readily available feedstocks. However, the scope of current methods is predominantly limited to mono- and di-substituted alkenes. The remote functionalization of multi- and heteroatom-substituted alkenes is challenging, and the use of alkynes in the chain walking is unexplored. We herein report a rhodium catalyzed remote borylation of internal alkynes, offering an unprecedented reaction mode of alkynes for the preparation of synthetically valuable 1,n-diboronates. The regioselective distal migratory hydroboration of sterically hindered tri- and tetra-substituted vinylboronates is also demonstrated to furnish various multi-boronic esters. Synthetic utilities are highlighted through the selective manipulation of the two boryl groups in products such as the regioselective cross coupling, oxidation, and amination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA