Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(6): 2886-2903, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38142446

RESUMEN

Adjusting intracellular metabolic pathways and adopting suitable live state such as biofilms, are crucial for bacteria to survive environmental changes. Although substantial progress has been made in understanding how the histone-like nucleoid-structuring (H-NS) protein modulates the expression of the genes involved in biofilm formation, the precise modification that the H-NS protein undergoes to alter its DNA binding activity is still largely uncharacterized. This study revealed that acetylation of H-NS at Lys19 inhibits biofilm development in Shewanella oneidensis MR-1 by downregulating the expression of glutamine synthetase, a critical enzyme in glutamine synthesis. We further found that nitrogen starvation, a likely condition in biofilm development, induces deacetylation of H-NS and the trimerization of nitrogen assimilation regulator GlnB. The acetylated H-NS strain exhibits significantly lower cellular glutamine concentration, emphasizing the requirement of H-NS deacetylation in Shewanella biofilm development. Moreover, we discovered in vivo that the activation of glutamine biosynthesis pathway and the concurrent suppression of the arginine synthesis pathway during both pellicle and attached biofilms development, further suggesting the importance of fine tune nitrogen assimilation by H-NS acetylation in Shewanella. In summary, posttranslational modification of H-NS endows Shewanella with the ability to respond to environmental needs by adjusting the intracellular metabolism pathways.


Asunto(s)
Histonas , Shewanella , Acetilación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Glutamina/genética , Histonas/metabolismo , Homeostasis , Procesamiento Proteico-Postraduccional , Shewanella/genética , Shewanella/metabolismo
2.
Hepatology ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38899975

RESUMEN

BACKGROUND AND AIMS: Liver HCC is the second leading cause of cancer-related deaths worldwide. The heterogeneity of this malignancy is driven by a wide range of genetic alterations, leading to a lack of effective therapeutic options. In this study, we conducted a systematic multi-omics characterization of HCC to uncover its metabolic reprogramming signature. APPROACH AND RESULTS: Through a comprehensive analysis incorporating transcriptomic, metabolomic, and lipidomic investigations, we identified significant changes in metabolic pathways related to glucose flux, lipid oxidation and degradation, and de novo lipogenesis in HCC. The lipidomic analysis revealed abnormal alterations in glycerol-lipids, phosphatidylcholine, and sphingolipid derivatives. Machine-learning techniques identified a panel of genes associated with lipid metabolism as common biomarkers for HCC across different etiologies. Our findings suggest that targeting phosphatidylcholine with saturated fatty acids and long-chain sphingolipid biosynthesis pathways, particularly by inhibiting lysophosphatidylcholine acyltransferase 1 ( LPCAT1 ) and ceramide synthase 5 ( CERS5 ) as potential therapeutic strategies for HCC in vivo and in vitro. Notably, our data revealed an oncogenic role of CERS5 in promoting tumor progression through lipophagy. CONCLUSIONS: In conclusion, our study elucidates the metabolic reprogramming nature of lipid metabolism in HCC, identifies prognostic markers and therapeutic targets, and highlights potential metabolism-related targets for therapeutic intervention in HCC.

3.
J Cell Mol Med ; 28(6): e18151, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38429903

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, the incidence of which increases with age, and the pathological changes in the brain are irreversible. Recent studies have highlighted the essential role of long noncoding RNAs (lncRNAs) in AD by acting as competing endogenous RNAs (ceRNAs). Our aim was to construct lncRNA-associated ceRNA regulatory networks composed of potential biomarkers for the early stage of AD. AD related datasets come from AlzData and GEO databases. The R package 'Limma' identifies differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases for functional enrichment analysis. Protein-protein interactions (PPIs) in DEGs were constructed in the STRING database, and Cytoscape software identified DEGs. Convergent functional genomics (CFG) analysis of differentially expressed hub genes (referred to as early-DEGs) in the brain before the development of AD pathology. The AlzData database analyses the expression levels of early-DEGs in different nerve cells. The lncRNA-miRNA-mRNA regulatory network was established according to the ceRNA hypothesis. We identified four lncRNAs (XIST, NEAT1, KCNQ1OT1 and HCG18) and four miRNAs (hsa-let-7c-5p, hsa-miR-107, hsa-miR-129-2-3p and hsa-miR-214-3p) were preliminarily identified as potential biomarkers for early AD, competitively regulating Atp6v0b, Atp6v1e1 Atp6v1f and Syt1. This study indicates that NEAT1, XIST, HCG18 and KCNQ1OT1 act as ceRNAs in competitive binding with miRNAs to regulate the expression of Atp6v0b, Atp6v1e1, Atp6v1f and Syt1 before the occurrence of pathological changes in AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , ARN Largo no Codificante , Humanos , Enfermedad de Alzheimer/genética , ARN Largo no Codificante/genética , Unión Competitiva , MicroARNs/genética , Biomarcadores , Redes Reguladoras de Genes
4.
Anal Chem ; 96(29): 11742-11750, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38980807

RESUMEN

Stroke is an acute injury of the central nervous system caused by the disorders of cerebral blood circulation, which has become one of the major causes of disability and death. Hemorrhage, particularly subarachnoid hemorrhage (SAH), is one of the poorest prognostic factors in stroke, which is related to the thrombolytic therapy, and has been considered very dangerous. In this context, the MR angiography with high sensitivity and resolution has been developed based on biocompatible paramagnetic ultrasmall NaGdF4 nanoprobes. Owing to the appropriate hydrodynamic diameter, the nanoprobe can be confined inside the blood vessels and it only extravasates at the vascular injury site when the bleeding occurs. Relying on this property, the three-dimensional (3D) anatomic structures of artery occlusion of stroke rat can be precisely visualized; reperfusion-related SAH has been successfully visualized and identified. Benefiting from the long blood half-life of the nanoprobe, the observation window of MR angiography can last for the whole period of reperfusion, thereby monitoring the probable SAH in real time during thrombolytic therapy. More importantly, through reconstruction of multiparametric MRI, the arterial occlusion, cerebral ischemic region, and SAH can be simultaneously visualized in vivo in a 3D manner for the first time. Therefore, the current study provides a novel approach for both noninvasive 3D vascular visualization and hemorrhage alert, which possesses great prospects for clinical translation.


Asunto(s)
Accidente Cerebrovascular Isquémico , Angiografía por Resonancia Magnética , Hemorragia Subaracnoidea , Animales , Hemorragia Subaracnoidea/diagnóstico por imagen , Ratas , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Ratas Sprague-Dawley , Masculino , Gadolinio/química , Reperfusión
5.
Biochem Biophys Res Commun ; 723: 150200, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38850814

RESUMEN

OBJECTIVES: This study aimed to explore the involvement of phosphoenolpyruvate carboxykinase 2 (PCK2) in gefitinib-resistant non-small cell lung cancer (NSCLC) cells and assess its feasibility as a therapeutic target against gefitinib resistance. METHODS: Gefitinib-resistant cell lines, PC9GR and HCC827GR, were generated through progressive exposure of parental cells to escalating concentrations of gefitinib. Transcriptomic analysis encompassed the treatment of PC9 and PC9GR cells with gefitinib or vehicle, followed by RNA extraction, sequencing, and subsequent bioinformatic analysis. Cell viability was determined via CCK-8 assay, while clonogenic assays assessed colony formation. Apoptosis was detected utilizing the Annexin V-FITC/7AAD kit. Iron ion concentrations were quantified using FerroOrange. mRNA analysis was conducted through quantitative RT-PCR. Western blotting was employed for protein analysis. H&E and immunohistochemical staining were performed on tumor tissue sections. RESULTS: The results revealed that depletion or inhibition of PCK2 significantly enhanced gefitinib's efficacy in inducing cell growth arrest, apoptosis, and ferroptosis in resistant NSCLC. Moreover, PCK2 knockdown led to the downregulation of key ferroptosis-related proteins, GPX4 and SLC7A11, while upregulating ASCL4. Conversely, overexpression of PCK2 in gefitinib-sensitive cells rendered resistance to gefitinib. In vivo experiments using a gefitinib-resistant xenograft model demonstrated that PCK2 silencing not only reduced tumor growth but also considerably increased the anti-tumor effect of gefitinib. CONCLUSIONS: In conclusion, our study presents compelling evidence indicating that PCK2 plays a pivotal role in gefitinib resistance in NSCLC. The modulation of ferroptosis-related proteins and the involvement of Akt activation further elucidate the mechanisms underlying this resistance. Consequently, PCK2 emerges as a promising therapeutic target for overcoming gefitinib resistance in NSCLC, offering a new avenue for the development of more effective treatment strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Ferroptosis , Gefitinib , Neoplasias Pulmonares , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Gefitinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Animales , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Antineoplásicos/farmacología , Ratones , Ratones Desnudos , Apoptosis/efectos de los fármacos
6.
BMC Plant Biol ; 24(1): 344, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684949

RESUMEN

BACKGROUND: Geographical factors affect the nutritional, therapeutic and commercial values of fruits. Dragon fruit (Hylocereus spp) is a popular fruit in Asia and a potential functional food with diverse pharmacological attributes. Although it is produced in various localities, the information related to the altitudinal variation of dragon fruit nutrients and active compounds is scarce. Hence, this study aimed to investigate the variations in metabolite profiles of H. polyrhizus (variety Jindu1) fruit pulps from three different altitudes of China, including Wangmo (WM, 650 m), Luodian (LD, 420 m), and Zhenning (ZN, 356 m). Jindu1 is the main cultivated pitaya variety in Guizhou province, China. RESULTS: The LC-MS (liquid chromatography-mass spectroscopy)-based widely targeted metabolic profiling identified 645 metabolites, of which flavonoids (22.64%), lipids (13.80%), phenolic acids (12.40%), amino acids and derivatives (10.39%), alkaloids (8.84%), and organic acids (8.37%) were dominant. Multivariate analyses unveiled that the metabolite profiles of the fruit differed regarding the altitude. Fruits from WM (highest altitude) were prime in quality, with higher levels of flavonoids, alkaloids, nucleotides and derivatives, amino acids and derivatives, and vitamins. Fruits from LD and ZN had the highest relative content of phenolic acids and terpenoids, respectively. We identified 69 significantly differentially accumulated metabolites across the pulps of the fruits from the three locations. KEGG analysis revealed that flavone and flavonol biosynthesis and isoflavonoid biosynthesis were the most differentially regulated. It was noteworthy that most active flavonoid compounds exhibited an increasing accumulation pattern along with the increase in altitude. Vitexin and isovitexin were the major differentially accumulated flavonoids. Furthermore, we identified two potential metabolic biomarkers (vitexin and kaempferol 3-O-[2-O-ß-D-galactose-6-O-a-L-rhamnose]-ß-D-glucoside) to discriminate between dragon fruits from different geographical origins. CONCLUSION: Our findings provide insights into metabolic changes in dragon fruits grown at different altitudes. Furthermore, they show that growing pitaya at high altitudes can produce fruit with higher levels of bioactive compounds, particularly flavonoids.


Asunto(s)
Altitud , Cactaceae , Frutas , Metabolómica , Espectrometría de Masas en Tándem , Frutas/metabolismo , Frutas/química , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Cactaceae/metabolismo , Cactaceae/química , Flavonoides/metabolismo , China , Cromatografía Líquida de Alta Presión , Metaboloma , Cromatografía Liquida/métodos , Cromatografía Líquida con Espectrometría de Masas
7.
BMC Med ; 22(1): 278, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956533

RESUMEN

BACKGROUND: APRI and FIB-4 scores are used to exclude clinically significant fibrosis (defined as stage ≥ F2) in patients with chronic viral hepatitis. However, the cut-offs for these scores (generated by Youden indices) vary between different patient cohorts. This study aimed to evaluate whether serum dithiothreitol-oxidizing capacity (DOC), i.e., a surrogate test of quiescin sulfhydryl oxidase-1, which is a matrix remodeling enzyme, could be used to non-invasively identify significant fibrosis in patients with various chronic liver diseases (CLDs). METHODS: Diagnostic performance of DOC was compared with APRI and FIB-4 for identifying significant fibrosis. ROC curve analyses were undertaken in: a) two chronic hepatitis B (CHB) cohorts, independently established from hospitals in Wenzhou (n = 208) and Hefei (n = 120); b) a MASLD cohort from Wenzhou hospital (n = 122); and c) a cohort with multiple CLD etiologies (except CHB and MASLD; n = 102), which was identified from patients in both hospitals. Cut-offs were calculated using the Youden index. All CLD patients (n = 552) were then stratified by age for ROC curve analyses and cut-off calculations. RESULTS: Stratified by CLD etiology or age, ROC curve analyses consistently showed that the DOC test was superior to APRI and FIB-4 for discriminating between clinically significant fibrosis and no fibrosis, when APRI and FIB-4 showed poor/modest diagnostic performance (P < 0.05, P < 0.01 and P < 0.001 in 3, 1 and 3 cohort comparisons, respectively). Conversely, the DOC test was equivalent to APRI and FIB-4 when all tests showed moderate/adequate diagnostic performances (P > 0.05 in 11 cohort comparisons). DOC had a significant advantage over APRI or FIB-4 scores for establishing a uniform cut-off independently of age and CLD etiology (coefficients of variation of DOC, APRI and FIB-4 cut-offs were 1.7%, 22.9% and 47.6% in cohorts stratified by CLD etiology, 2.0%, 26.7% and 29.5% in cohorts stratified by age, respectively). The uniform cut-off was 2.13, yielded from all patients examined. Surprisingly, the uniform cut-off was the same as the DOC upper limit of normal with a specificity of 99%, estimated from 275 healthy control individuals. Hence, the uniform cut-off should possess a high negative predictive value for excluding significant fibrosis in primary care settings. A high DOC cut-off with 97.5% specificity could be used for detecting significant fibrosis (≥ F2) with an acceptable positive predictive value (87.1%). CONCLUSIONS: This proof-of-concept study suggests that the DOC test may efficiently rule out and rule in significant liver fibrosis, thereby reducing the numbers of unnecessary liver biopsies. Moreover, the DOC test may be helpful for clinicians to exclude significant liver fibrosis in the general population.


Asunto(s)
Biomarcadores , Ditiotreitol , Cirrosis Hepática , Humanos , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/sangre , Masculino , Persona de Mediana Edad , Biomarcadores/sangre , Femenino , Adulto , Anciano , Oxidación-Reducción , Curva ROC , Estudios de Cohortes , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/sangre , Prueba de Estudio Conceptual
8.
BMC Neurol ; 24(1): 191, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849737

RESUMEN

BACKGROUND: Depression is a complex mood disorder whose pathogenesis involves multiple cell types and molecular pathways. The prefrontal cortex, as a key brain region for emotional regulation, plays a crucial role in depression. Microglia, as immune cells of the central nervous system, have been closely linked to the development and progression of depression through their dysfunctional states. This study aims to utilize single-cell RNA-seq technology to reveal the pathogenic mechanism of YAP1 in prefrontal cortex microglia in depression. METHODS: Firstly, we performed cell type identification and differential analysis on normal and depressed prefrontal cortex tissues by mining single-cell RNA-seq datasets from public databases. Focusing on microglia, we conducted sub-clustering, differential gene KEGG enrichment analysis, intercellular interaction analysis, and pseudotime analysis. Additionally, a cross-species analysis was performed to explore the similarities and differences between human and rhesus monkey prefrontal cortex microglia. To validate our findings, we combined bulk RNA-Seq and WGCNA analysis to reveal key genes associated with depression and verified the relationship between YAP1 and depression using clinical samples. RESULTS: Our study found significant changes in the proportion and transcriptional profiles of microglia in depressed prefrontal cortex tissues. Further analysis revealed multiple subpopulations of microglia and their associated differential genes and signaling pathways related to depression. YAP1 was identified as a key molecule contributing to the development of depression and was significantly elevated in depression patients. Moreover, the expression level of YAP1 was positively correlated with HAMD scores, suggesting its potential as a biomarker for predicting the onset of depression. CONCLUSION: This study utilized single-cell RNA-seq technology to reveal the pathogenic mechanism of YAP1 in prefrontal cortex microglia in depression, providing a new perspective for a deeper understanding of the pathophysiology of depression and identifying potential targets for developing novel treatment strategies.


Asunto(s)
Macaca mulatta , Microglía , Corteza Prefrontal , Análisis de la Célula Individual , Proteínas Señalizadoras YAP , Corteza Prefrontal/metabolismo , Microglía/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Humanos , Animales , Análisis de la Célula Individual/métodos , RNA-Seq , Depresión/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Masculino , Femenino , Análisis de Expresión Génica de una Sola Célula
9.
Inorg Chem ; 63(18): 8079-8091, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38663005

RESUMEN

Density functional theory (DFT) calculations have been conducted to elucidate the detailed mechanisms of yttrium-catalyzed C-H polyaddition of 1,4-dimethoxybenzene (DMB) to 1,4-divinylbenzene (DVB). It was computationally determined that DMB not only serves as a substrate but also performs a crucial role as a ligand, stabilizing the catalytically active species and promoting alkene insertion. Side pathways involving Cß-H activation and C═C continuous insertion were excluded due to steric and electronic factors, respectively, explaining why the reaction occurred efficiently and selectively to give perfectly alternating DMB-DVB polymers. Interestingly, the theoretical prediction of the reactivity of N,N-dimethyl-1,4-phenylenediamine and 2,2'-biethyl-4,4'-bipyridine reveals significant differences in the coordination effects of these substrates, leading to distinct mechanisms, primarily influenced by their steric effects. These findings shed new light on the previously overlooked role of substrate ligand effects in rare-earth-catalyzed step-growth copolymerization reactions.

10.
Inorg Chem ; 63(20): 9195-9203, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38722730

RESUMEN

The stereoselective polymerization of polar vinyl monomers has recently received much attention due to their excellent physicochemical properties. Over the past decade, breakthroughs have been achieved in this field by rare-earth catalysts. However, the mechanistic origins of those stereoselective polymerizations still remain unclear. Herein, stereoselective polymerization of ortho-methoxystyrene (oMOS) by several representative rare-earth catalysts bearing different ligands (i.e., η5-C5Me5, pyridinyl-methylene-fluorenyl, quinolyl-anilido, ß-diketiminato) were systematically investigated by density functional theory (DFT) calculations. After achieving agreement between the calculations and experiments, we focused on discussing the role of ligands in controlling stereoselectivity. Our results reveal that the stereoregularity of oMOS polymerization is mainly controlled by the steric effect of the catalyst-monomer structures. Specifically, the type of ligand influences the orientation and configuration of the inserting monomer, thereby affecting the tacticity of the polymers. In the cases of η5-C5Me5-, pyridinyl-methylene-fluorenyl, and quinolyl-anilido-ligated yttrium catalysts, we observe consistent insertion directions and alternating insertion sides of oMOS monomers, leading to syndiotactic selectivity. The opposite insertion directions and the alternating insertion sides of oMOS monomers were observed in the case of the ß-diketiminato yttrium catalyst, leading to isotactic selectivity. These findings reported here offer valuable insights into the role of ligands in controlling stereoselectivity in rare-earth catalyzed coordination polymerization of polar vinyl monomers, thus providing guidance for the rational design of new ligands for stereospecific polymerization of polar monomers in the future.

11.
Inorg Chem ; 63(7): 3544-3559, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38308632

RESUMEN

The direct copolymerization of polar and nonpolar olefins is of great interest and significance, as it is the most atom-economical and straightforward strategy for the synthesis of functional polyolefin materials. Despite considerable efforts, the precise control of monomer-sequence and their regio- and stereochemistry is full of challenges, and the related mechanistic origins are still in their infancy to date. Herein, the mechanistic studies on the model reaction of Sc-catalyzed co-syndiospecific alternating copolymerization of anisylpropylene (AP) and styrene were performed by DFT calculations. The results suggest that the subtle balance between electronic and steric factors plays an important role during monomer insertions, and a new amino-dissociated mechanism was proposed for AP insertion at chain initiation. AP insertion follows the 2,1-si-insertion pattern, which is mainly controlled by steric factors caused by the restricted MeO···Sc interaction. As for styrene insertion, it prefers the 2,1-re-insertion manner and its regio- and stereoselectivities are influenced by steric repulsions between the inserting styrene and the polymer chain or the ligand. More interestingly, it is found that the alternating monomer-sequence is mainly determined by the "steric matching" principle, which is quantitatively expressed by the buried volume of the metal center of the preinserted species. The concept of steric pocket has been successfully applied to explain the different performances of several catalysts and other alternating copolymerization reactions. The insightful mechanistic findings and the quantitative steric pocket model present here are expected to promote rational design of new rare-earth catalysts for developing regio-, stereo-, and sequence-controlled copolymerization of specific polar and nonpolar olefins.

12.
Support Care Cancer ; 32(3): 151, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38332357

RESUMEN

PURPOSE: To evaluate the effect of telehealth interventions on adherence to endocrine therapy among patients with breast cancer. METHODS: A systematic search of five English databases (PubMed, Web of Science, Embase, the American Psychological Association PsycNet, and the Cochrane Library) and four Chinese databases (Chinese National Knowledge Infrastructure, SinoMed, WanFang Data, and WeiPu Data) was performed from inception to March 31, 2023. Two investigators independently screened the available studies for eligibility and extracted relevant data. Quality assessment was conducted using the Cochrane Risk of Bias Tool. The effect size was computed based on the risk ratio for dichotomous data and standardized mean difference for continuous data using Review Manager 5.4. RESULTS: A total of 1,780 participants from eight randomized controlled trials were included. These studies involved treatment with aromatase inhibitors only (n = 3) or aromatase inhibitors plus tamoxifen (n = 5). Telehealth interventions involved web-based interventions, telephone-based interventions, interventions via mobile applications, and interventions based on technology. In three studies, subjective measures were used, while objective measures were utilized in another three. Two studies incorporated a combination of both subjective and objective measures. The duration of the interventions varied among studies, ranging from a week to 36 months. The follow-up duration ranged from 4 weeks to 36 months. The quality of included studies was moderate to high. The meta-analysis of the five studies reporting dichotomous data showed that telehealth interventions had a significant effect on adherence to endocrine therapy (RR = 0.86, 95% CI = 0.76-0.97). Moreover, four studies reported continuous data. The meta-analysis demonstrated that telehealth interventions significantly improved adherence to endocrine therapy at 1 month (SMD = 0.50, 95% CI = 0.10-0.90), 3 months (SMD = 0.58, 95% CI = 0.17-0.99), and 6 months (SMD = 0.27, 95% CI = 0.08-0.47) of follow-up. CONCLUSION: Telehealth interventions may facilitate adherence to endocrine therapy among patients with breast cancer. Further research should adopt a theory-based design and explore the longer-term effects.


Asunto(s)
Neoplasias de la Mama , Telemedicina , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de la Aromatasa
13.
Environ Res ; 249: 118254, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301762

RESUMEN

The electro-Fenton (EF) based on gas-diffusion electrodes (GDEs) reveals promising application prospective towards recalcitrant organics degradation because such GDEs often yields superior H2O2 generation efficiency and selectivity. However, the low efficiency of Fe2+/Fe3+ cycle with GDEs is always considered to be the limiting step for the EF process. In this study, activated carbon fiber (ACF) was firstly employed as co-catalyst to facilitate the performance of antibiotic cefaclor (CEC) decomposition in EF process. It was found that the addition of ACF co-catalyst achieved a rapid Fe2+/Fe3+ cycling, which significantly enhanced Fenton's reaction and hydroxyl radicals (•OH) generation. X-ray photoelectron spectroscopy (XPS) results indicated that the functional groups on ACF surface are related to the conversion of Fe3+ into Fe2+. Moreover, DMSO probing experiment confirmed the enhanced •OH production in EF + ACF system compared to conventional EF system. When inactive BDD and Ti4O7/Ti anodes were paired to EF system, the addition of ACF could significantly improve mineralization degree. However, a large amount of toxic byproducts, including chlorate (ClO3-) and perchlorate (ClO4-), were generated in these EF processes, especially for BDD anode, due to their robust oxidation capacity. Higher mineralization efficiency and less toxic ClO4- generation were obtained in the EF + ACF process with Ti4O7/Ti anode. This presents a novel alternative for efficient chloride-containing organic removal during wastewater remediation.


Asunto(s)
Antibacterianos , Fibra de Carbono , Cefaclor , Electrodos , Peróxido de Hidrógeno , Hierro , Contaminantes Químicos del Agua , Fibra de Carbono/química , Antibacterianos/química , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química , Hierro/química , Cefaclor/química , Catálisis , Carbón Orgánico/química , Técnicas Electroquímicas/métodos
14.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891943

RESUMEN

Taxus × media, belonging to the genus Taxus of the Taxaceae family, is a unique hybrid plant derived from a natural crossbreeding between Taxus cuspidata and Taxus baccata. This distinctive hybrid variety inherits the superior traits of its parental species, exhibiting significant biological and medicinal values. This paper comprehensively analyzes Taxus × media from multiple dimensions, including its cultivation overview, chemical composition, and multifaceted applications in the medical field. In terms of chemical constituents, this study delves into the bioactive components abundant in Taxus × media and their pharmacological activities, highlighting the importance and value of these components, including paclitaxel, as the lead compounds in traditional medicine and modern drug development. Regarding its medicinal value, the article primarily discusses the potential applications of Taxus × media in combating tumors, antibacterial, anti-inflammatory, and antioxidant activities, and treating diabetes. By synthesizing clinical research and experimental data, the paper elucidates the potential and mechanisms of its primary active components in preventing and treating these diseases. In conclusion, Taxus × media demonstrates its unique value in biological research and tremendous potential in drug development.


Asunto(s)
Taxus , Taxus/química , Humanos , Química Farmacéutica/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Antioxidantes/química
15.
J Environ Manage ; 360: 121159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759549

RESUMEN

Intimately coupled photocatalysis and biodegradation (ICPB) system is a potential wastewater treatment technology, of which TiO2-based ICPB system has been widely studied. There are many ways to improve the degradation efficiency of the ICPB process, but no crystal facet engineering method has been reported yet. In this work, a new ICPB system coated with NaF-TiO2 exposing high energy facets was designed to degrade biorecalcitrant psychotropic drug - venlafaxine (VNF). Initially, the TiO2 crystal surface was modified with NaF, resulting in the formation of NaF-TiO2 with a 14.4% increase in the exposure ratio of (001). The contribution rate of ·OH was increased by 9.5%, and the contribution rate of h+ was increased by 33.2%. Next, NaF-TiO2 was loaded onto the surface of the sponge carrier, and then the ICPB system was constructed after about 15 days of biofilm formation. After the ICPB system was acclimated with VNF, the removal rate of COD decreased significantly (the lowest was 62.7%), but that of ammonia nitrogen remained at 50.5 ± 6.0% and the extracellular polymeric substance (EPS) secretion increased by 84.1 mg/g VSS. According to the high throughput results, at the phylum level, Proteobacteria and Chloroflexi together maintain the nitrogen removal capability and structural stability of the ICPB system. The relative abundance of Bacteroidota was significantly increased by 14.2%, suggesting that there may be some correlation between Bacteroidota and certain metabolites of the anti-depressant active ingredients. At the genus level, the Thauera (3.1%∼11.5%) is the major bacterial group that secretes EPS, protecting biofilm against external influences. Most of the changes in microorganisms are consistent with the decontamination properties and macroscopic appearance of EPS in the ICPB system. Finally, the degradation efficiency of ICPB system for VNF was investigated (92.7 ± 3.8%) and it was mostly through hydroxylation and demethylation pathways, with more small molecular products detected, providing the basis for biological assimilation of VNF. Collectively, the NaF-TiO2 based ICPB system would be lucrative for the future degradation of venlafaxine.


Asunto(s)
Biodegradación Ambiental , Biopelículas , Titanio , Clorhidrato de Venlafaxina , Biopelículas/efectos de los fármacos , Titanio/química , Cinética , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Catálisis
16.
Molecules ; 29(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474640

RESUMEN

Taxus mairei (Lemée and H.Lév.) S.Y.Hu, indigenous to the southern regions of China, is an evergreen tree belonging to the genus Taxus of the Taxaceae family. Owing to its content of various bioactive compounds, it exhibits multiple pharmacological activities and has been widely applied in clinical medicine. This article comprehensively discusses the current state of cultivation, chemical constituents, applications in the pharmaceutical field, and the challenges faced by T. mairei. The paper begins by detailing the ecological distribution of T. mairei, aiming to provide an in-depth understanding of its origin and cultivation overview. In terms of chemical composition, the article thoroughly summarizes the extracts and monomeric components of T. mairei, unveiling their pharmacological activities and elucidating the mechanisms of action based on the latest scientific research, as well as their potential as lead compounds in new drug development. The article also addresses the challenges in the T. mairei research, such as the difficulties in extracting and synthesizing active components and the need for sustainable utilization strategies. In summary, T. mairei is a rare species important for biodiversity conservation and demonstrates significant research and application potential in drug development and disease treatment.


Asunto(s)
Taxaceae , Taxus , Taxus/química , China
17.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 620-626, 2024 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-38932550

RESUMEN

Near-infrared fluorescence imaging technology, which possesses superior advantages including real-time and fast imaging, high spatial and temporal resolution, and deep tissue penetration, shows great potential for tumor imaging in vivo and therapy. Ⅰ-Ⅲ-Ⅵ quantum dots exhibit high brightness, broad excitation, easily tunable emission wavelength and superior stability, and do not contain highly toxic heavy metal elements such as cadmium or lead. These advantages make Ⅰ-Ⅲ-Ⅵ quantum dots attract widespread attention in biomedical field. This review summarizes the recent advances in the controlled synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots and their applications in tumor imaging in vivo and therapy. Firstly, the organic-phase and aqueous-phase synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots as well as the strategies for regulating the near-infrared photoluminescence are briefly introduced; secondly, representative biomedical applications of near-infrared-emitting cadmium-free quantum dots including early diagnosis of tumor, lymphatic imaging, drug delivery, photothermal and photodynamic therapy are emphatically discussed; lastly, perspectives on the future directions of developing quantum dots for biomedical application and the faced challenges are discussed. This paper may provide guidance and reference for further research and clinical translation of cadmium-free quantum dots in tumor diagnosis and treatment.


Asunto(s)
Cadmio , Neoplasias , Imagen Óptica , Puntos Cuánticos , Puntos Cuánticos/química , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Imagen Óptica/métodos , Animales , Fotoquimioterapia/métodos , Sistemas de Liberación de Medicamentos , Rayos Infrarrojos , Espectroscopía Infrarroja Corta
18.
J Neurochem ; 166(3): 560-571, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37282785

RESUMEN

The glymphatic system is a newly discovered perivascular network where cerebrospinal fluid mixes with interstitial fluid, facilitating clearance of protein solutes and metabolic waste from the parenchyma. The process is strictly dependent on water channel aquaporin-4 (AQP4) expressed on the perivascular astrocytic end-feet. Various factors, such as noradrenaline levels related to the arousal state, influence clearance efficiency, highlighting the possibility that other neurotransmitters additionally modulate this process. To date, the specific role of γ-aminobutyric acid (GABA) in the glymphatic system remains unknown. We used C57BL/6J mice to observe the regulatory effect of GABA on glymphatic pathway by administering a cerebrospinal fluid tracer containing GABA or its GABAA receptor (GABAA R) antagonist through cisterna magna injection. Then, we employed an AQP4 knockout mouse model to explore the regulatory effects of GABA on glymphatic drainage and further study whether transcranial magnetic stimulation-continuous theta burst stimulation (cTBS) could regulate the glymphatic pathway through the GABA system. Our data showed that GABA promotes glymphatic clearance in an AQP4-dependent manner by activating the GABAA R. Furthermore, cTBS was found to modulate the glymphatic pathway by activating the GABA system. Accordingly, we propose that regulating the GABA system by cTBS could modulate glymphatic clearance and provide new insight for clinical prevention and treatment of abnormal protein deposition-related diseases.


Asunto(s)
Encéfalo , Sistema Glinfático , Animales , Ratones , Acuaporina 4/metabolismo , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
19.
Plant Cell Environ ; 46(8): 2523-2541, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303272

RESUMEN

Hydrogen sulfide (H2 S) performs a crucial role in plant development and abiotic stress responses by interacting with other signalling molecules. However, the synergistic involvement of H2 S and rhizobia in photosynthetic carbon (C) metabolism in soybean (Glycine max) under nitrogen (N) deficiency has been largely overlooked. Therefore, we scrutinised how H2 S drives photosynthetic C fixation, utilisation, and accumulation in soybean-rhizobia symbiotic systems. When soybeans encountered N deficiency, organ growth, grain output, and nodule N-fixation performance were considerably improved owing to H2 S and rhizobia. Furthermore, H2 S collaborated with rhizobia to actively govern assimilation product generation and transport, modulating C allocation, utilisation, and accumulation. Additionally, H2 S and rhizobia profoundly affected critical enzyme activities and coding gene expressions implicated in C fixation, transport, and metabolism. Furthermore, we observed substantial effects of H2 S and rhizobia on primary metabolism and C-N coupled metabolic networks in essential organs via C metabolic regulation. Consequently, H2 S synergy with rhizobia inspired complex primary metabolism and C-N coupled metabolic pathways by directing the expression of key enzymes and related coding genes involved in C metabolism, stimulating effective C fixation, transport, and distribution, and ultimately improving N fixation, growth, and grain yield in soybeans.


Asunto(s)
Glycine max , Rhizobium , Glycine max/genética , Rhizobium/fisiología , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Fotosíntesis , Simbiosis/genética
20.
Opt Express ; 31(19): 30020-30029, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710554

RESUMEN

With the characteristics of ultrasmall, ultrafast, and topological protection, optical skyrmions are great prospects for applications in high intensity data stroage, high resolution microscopic imaging, and polarization sensing. Flexible control over the topology of optical skyrmions is required for practical implementation/application. At present, the manipulation of optical skyrmions usually relies upon the change of spatial structure, which results in a limited-tuning range and a discontinuous control in the parameter space. Here, we propose continuous manipulation of the graphene plasmon skyrmions based on the electrotunable properties of graphene. By changing the Fermi energy of one pair of the standing waves or the phase of incident light, one can achieve topological state transformation of graphene plasmon skyrmions, which is evident by the change of skyrmion number from 1 to 0.5. The direct manipulation of the graphene plasmon skyrmions is demonstrated by simulation results based on the finite element method. Our work suggests a feasible way to flexibly control the topology of an optical skyrmionic field, which can be used for novel integrated photonic devices in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA