Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 60(9): 874-884, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36898841

RESUMEN

BACKGROUND: In several countries, thyroid dyshormonogenesis is more common than thyroid dysgenesis in patients with congenital hypothyroidism (CH). However, known pathogenic genes are limited to those directly involved in hormone biosynthesis. The aetiology and pathogenesis of thyroid dyshormonogenesis remain unknown in many patients. METHODS: To identify additional candidate pathogenetic genes, we performed next-generation sequencing in 538 patients with CH and then confirmed the functions of the identified genes in vitro using HEK293T and Nthy-ori 3.1 cells, and in vivo using zebrafish and mouse model organisms. RESULTS: We identified one pathogenic MAML2 variant and two pathogenic MAMLD1 variants that downregulated canonical Notch signalling in three patients with CH. Zebrafish and mice treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester, a γ-secretase inhibitor exhibited clinical manifestations of hypothyroidism and thyroid dyshormonogenesis. Through organoid culture of primary mouse thyroid cells and transcriptome sequencing, we demonstrated that Notch signalling within thyroid cells directly affects thyroid hormone biosynthesis rather than follicular formation. Additionally, these three variants blocked the expression of genes associated with thyroid hormone biosynthesis, which was restored by HES1 expression. The MAML2 variant exerted a dominant-negative effect on both the canonical pathway and thyroid hormone biosynthesis. MAMLD1 also regulated hormone biosynthesis through the expression of HES3, the target gene of the non-canonical pathway. CONCLUSIONS: This study identified three mastermind-like family gene variants in CH and revealed that both canonical and non-canonical Notch signalling affected thyroid hormone biosynthesis.


Asunto(s)
Hipotiroidismo Congénito , Animales , Humanos , Ratones , Hipotiroidismo Congénito/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Mutación , Proteínas Nucleares/genética , Hormonas Tiroideas/genética , Transactivadores/genética , Factores de Transcripción/genética , Pez Cebra
2.
J Integr Plant Biol ; 66(6): 1052-1067, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501444

RESUMEN

ACYL-CoA-BINDING PROTEINs (ACBPs) play crucial regulatory roles during plant response to hypoxia, but their molecular mechanisms remain poorly understood. Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70, influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana. Furthermore, we demonstrate the direct binding of WRKY70 to the ACBP4 promoter, resulting in its upregulation and suggesting a positive feedback loop. Additionally, we pinpointed a phosphorylation site at Ser638 of ACBP4, which enhances submergence tolerance, potentially by facilitating WRKY70's nuclear shuttling. Surprisingly, a natural variation in this phosphorylation site of ACBP4 allowed A. thaliana to adapt to humid conditions during its historical demographic expansion. We further observed that both phosphorylated ACBP4 and oleoyl-CoA can impede the interaction between ACBP4 and WRKY70, thus promoting WRKY70's nuclear translocation. Finally, we found that the overexpression of orthologous BnaC5.ACBP4 and BnaA7.WRKY70 in Brassica napus increases submergence tolerance, indicating their functional similarity across genera. In summary, our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response, but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Fosforilación , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ADN
3.
Bioconjug Chem ; 34(12): 2255-2262, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37955377

RESUMEN

Bioorthogonal prodrug therapies offer an intriguing two-component system that features enhanced circulating stability and controlled activation on demand. Current strategies often deliver either the prodrug or its complementary activator to the tumor with a monomechanism targeted mechanism, which cannot achieve the desired antitumor efficacy and safety profile. The orchestration of two distinct and orthogonal mechanisms should overcome the hierarchical heterogeneity of solid tumors to improve the delivery efficiency of both components simultaneously for bio-orthogonal prodrug therapies. We herein developed a dual-mechanism targeted bioorthogonal prodrug therapy by integrating two orthogonal, receptor-independent tumor-targeting strategies. We first employed the endogenous albumin transport system to generate the in situ albumin-bound, bioorthogonal-caged doxorubicin prodrug with extended plasma circulation and selective accumulation at the tumor site. We then employed enzyme-instructed self-assembly (EISA) to specifically enrich the bioorthogonal activators within tumor cells. As each targeted delivery mode induced an intrinsic pharmacokinetic profile, further optimization of the administration sequence according to their pharmacokinetics allowed the spatiotemporally controlled prodrug activation on-target and on-demand. Taken together, by orchestrating two discrete and receptor-independent targeting strategies, we developed an all-small-molecule based bioorthogonal prodrug system for dual-mechanism targeted anticancer therapies to maximize therapeutic efficacy and minimize adverse drug reactions for chemotherapeutic agents.


Asunto(s)
Neoplasias , Profármacos , Humanos , Profármacos/farmacología , Profármacos/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Albúminas , Línea Celular Tumoral
4.
BMC Cancer ; 23(1): 454, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202737

RESUMEN

Histone lysine demethylases (KDMs) have been reported in various malignances, which affect transcriptional regulation of tumor suppressor or oncogenes. However, the relationship between KDMs and formation of tumor microenvironment (TME) in gastric cancer (GC) remain unclear and need to be comprehensively analyzed.In the present study, 24 KDMs were obtained and consensus molecular subtyping was performed using the "NMF" method to stratify TCGA-STAD into three clusters. The ssGSEA and CIBERSORT algorithms were employed to assess the relative infiltration levels of various cell types in the TME. The KDM_score was devised to predict patient survival outcomes and responses to both immunotherapy and chemotherapy.Three KDM genes-related molecular subtypes were Figured out in GC with distinctive clinicopathological and prognostic features. Based on the robust KDM genes-related risk_score and nomogram, established in our work, GC patients' clinical outcome can be well predicted. Furthermore, low KDM genes-related risk_score exhibited the more effective response to immunotherapy and chemotherapy.This study characterized three KDM genes-related TME pattern with unique immune infiltration and prognosis by comprehensively analyses of transcriptomic profiling. Risk_score was also built to help clinicians decide personalized anticancer treatment for GC patients, including in prediction of immunotherapy and chemotherapy response for patients.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Transcriptoma , Microambiente Tumoral/genética , Oncogenes , Inmunoterapia , Pronóstico
5.
Anal Bioanal Chem ; 415(28): 6915-6929, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37410126

RESUMEN

Arsenic (As) is one of the most concerning elements due to its high exposure risks to organisms and ecosystems. The interaction between arsenicals and proteins plays a pivotal role in inducing their biological effects on living systems, e.g., arsenicosis. In this review article, the recent advances in analytical techniques and methods of As-binding proteomes were well summarized and discussed, including chromatographic separation and purification, biotin-streptavidin pull-down probes, in situ imaging using novel fluorescent probes, and protein identification. These analytical technologies could provide a growing body of knowledge regarding the composition, level, and distribution of As-binding proteomes in both cells and biological samples, even at the organellar level. The perspectives on analysis of As-binding proteomes are also proposed, e.g., isolation and identification of minor proteins, in vivo targeted protein degradation (TPD) technologies, and spatial As-binding proteomics. The application and development of sensitive, accurate, and high-throughput methodologies of As-binding proteomics would enable us to address the key molecular mechanisms underlying the adverse health effects of arsenicals.


Asunto(s)
Arsénico , Arsenicales , Proteoma , Ecosistema , Arsenicales/química , Biotina/química
6.
Int J Colorectal Dis ; 38(1): 115, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37148381

RESUMEN

PURPOSE: Lymph node metastases are uncommon in pT1-2 rectal cancer. pT1-2N1 are often characterized with low tumor burden and intermediate prognosis. Therefore, adjuvant radiotherapy (ART) is controversial in these patients. This study aimed to investigate the value of ART in pT1-2 rectal cancer and evaluate the guiding role of lymph node ratio (LNR) for utilization of ART. METHODS: pT1-2N1 rectal cancer patients who received surgery without neoadjuvant radiotherapy between 2000 and 2018 with at least 12 lymph node harvest were extracted from the Surveillance, Epidemiology and End Results (SEER) database. We used time-dependent receiver operating characteristic (ROC) analysis to determine the optimal cutoff of LNR. Kaplan-Meier methods and Cox proportional hazards regression models were performed to determine the prognostic value of ART in pT1-2N1 rectal cancer patients and subgroups stratified by LNR. RESULTS: A total of 674 and 1321 patients with pT1N1 and pT2N1 rectal cancer were eligible for analysis. There was no statistical cancer-specific survival (CSS) difference in pT1N1 rectal cancer patients between receiving and not receiving ART (P = 0.464). The 5-year CSS was 89.6% and 83.2% in pT2N1 rectal cancer patients between receiving and not receiving ART, respectively (P = 0.003). A total of 7.0% was identified as the optimal cutoff value of LNR. Survival improvement offered by ART was only found in LNR ≥ 7.0% subgroup (5-year CSS: 89.5% versus 79.6%, P = 0.003) instead of LNR < 7.0% subgroup (5-year CSS: 89.9% versus 86.3%, P = 0.208). CONCLUSION: ART show substantial survival benefit in pT2N1 rectal cancer patients with LNR ≥ 7.0%, warranting the conventional adoption of ART in this subgroup.


Asunto(s)
Índice Ganglionar , Neoplasias del Recto , Humanos , Radioterapia Adyuvante , Estadificación de Neoplasias , Pronóstico , Ganglios Linfáticos/patología , Neoplasias del Recto/radioterapia , Neoplasias del Recto/cirugía
7.
Am J Physiol Cell Physiol ; 322(4): C723-C738, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35138176

RESUMEN

Numerous studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect host cells through binding to angiotensin I converting enzyme 2 (ACE2) expressing in various tissues and organs. In this study, we deeply analyzed the single-cell expression profiles of ACE2 in fetal and adult human hearts to explore the potential mechanism of SARS-CoV-2 harming the heart. The molecular docking software was used to simulate the binding of SARS-CoV-2 and its variant spike protein with ACE2. The genes closely related to ACE2 in renin-angiotensin system (RAS) were identified by constructing a protein-protein interaction network. Through the analysis of single-cell transcription profiles at different stages of human embryos, we found that the expression level of ACE2 in ventricular myocytes was increased with embryonic development. The results of single-cell sequencing analysis showed that the expression of ACE2 in ventricular myocytes was upregulated in heart failure induced by dilated cardiomyopathy compared with normal hearts. The upregulation of ACE2 increases the risk of infection with SARS-CoV-2 in fetal and adult human hearts. We also further confirmed the expression of ACE2 and ACE2-related genes in normal and SARS-CoV-2-infected human pluripotent stem cell-derived cardiomyocytes. In addition, the pathway analysis revealed that ACE2 may regulate the differently expressed genes in heart failure through calcium signaling pathway and Wnt signaling pathway.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , SARS-CoV-2 , Adulto , Enzima Convertidora de Angiotensina 2/genética , Femenino , Humanos , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Embarazo , Sistema Renina-Angiotensina
8.
Clin Endocrinol (Oxf) ; 96(4): 617-626, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34374102

RESUMEN

OBJECTIVE: Congenital hypothyroidism (CH) is known to be due to thyroid dyshormonogenesis (DH), which is mostly inherited in an autosomal recessive inheritance pattern or thyroid dysgenesis (TD), whose inheritance pattern is controversial and whose molecular etiology remains poorly understood. DESIGN AND METHODS: The variants in 37 candidate genes of CH, including 25 genes related to TD, were screened by targeted exon sequencing in 205 Chinese patients whose CH cannot be explained by biallelic variants in genes related to DH. The inheritance pattern of the genes was analyzed in family trios or quartets. RESULTS: Of the 205 patients, 83 patients carried at least one variant in 19 genes related to TD, and 59 of those 83 patients harbored more than two variants in distinct candidate genes for CH. Biallelic or de novo variants in the genes related to TD in Chinese patients are rare. We also found nine probands carried only one heterozygous variant in the genes related to TD that were inherited from a euthyroid either paternal or maternal parent. These findings did not support the monogenic inheritance pattern of the genes related to TD in CH patients. Notably, in family trio or quartet analysis, of 36 patients carrying more than two variants in distinct genes, 24 patients carried these variants inherited from both their parents, which indicated that the oligogenic inheritance pattern of the genes related to TD should be considered in CH. CONCLUSIONS: Our study expanded the variant spectrum of the genes related to TD in Chinese CH patients. It is rare that CH in Chinese patients could be explained by monogenic germline variants in genes related to TD. The hypothesis of an oligogenic origin of the CH should be considered.


Asunto(s)
Hipotiroidismo Congénito , Disgenesias Tiroideas , China , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación/genética , Disgenesias Tiroideas/genética
9.
Gen Comp Endocrinol ; 323-324: 114033, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35367205

RESUMEN

Congenital hypothyroidism (CH) is a highly prevalent but treatable neonatal endocrine disorder. Thyroid peroxidase (TPO) catalyzes key reactions in thyroid hormone (TH) synthesis. TPO mutations have been found to underlie approximately 5% of congenital hypothyroidism in Chinese patients with more severe phenotypes, the treatment of whom usually requires a higher dose of L-thyroxine. The Tpo gene of zebrafish has 66% homology with the human TPO gene, and synteny analysis has indicated that it is likely a human TPO ortholog. In this study, we generated a tpo-/- mutant zebrafish line through knockout of tpo with CRISPR/Cas9 and investigated the associated phenotypes. Tpo-/- mutant zebrafish displayed growth retardation; an increased number of thyroid follicular cells; and abnormal extrathyroidal phenotypes including pigmentation defects, erythema in the thoracic region, delayed scale development and failure of swim bladder secondary lobe formation. All these abnormal phenotypes were reversed by 30 nM thyroxine (T4) treatment starting at 1 month of age. Tpo-/- mutants also showed increased glucose levels during larval stages, and the increases were induced at least in part by increasing glucagon and decreasing insulin expression. Our work indicates that tpo-mutant zebrafish may serve as a human congenital hypothyroidism model for studying TPO- and TH-related disease mechanisms.


Asunto(s)
Hipotiroidismo Congénito , Animales , Hipotiroidismo Congénito/genética , Glucosa , Homeostasis , Humanos , Yoduro Peroxidasa/genética , Mutación , Hormonas Tiroideas , Tiroxina , Pez Cebra
10.
Sensors (Basel) ; 22(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36081028

RESUMEN

In this study, pure zinc stannate (ZnSnO3) and bismuth (Bi)-doped ZnSnO3 composites (Bi-ZnSnO3) were synthesized via the in situ precipitation method, and their microstructures, morphologies, chemical components, sizes, and specific surface areas were characterized, followed by testing their gas sensing properties. The results revealed that Bi-ZnSnO3 showed superior gas sensing properties to n-butanol gas, with an optimal operating temperature of 300 °C, which was 50 °C lower than that of pure ZnSnO3. At this temperature, moreover, the sensitivity of Bi-ZnSnO3 to n-butanol gas at the concentration of 100 ppm reached as high as 1450.65, which was 35.57 times that (41.01) of ammonia gas, 2.93 times that (495.09) of acetone gas, 6.02 times that (241.05) of methanol gas, 2.54 times that (571.48) of formaldehyde gas, and 2.98 times that (486.58) of ethanol gas. Bi-ZnSnO3 had a highly repeatable performance. The total proportion of oxygen vacancies and chemi-adsorbed oxygen in Bi-ZnSnO3 (4 wt%) was 27.72% to 32.68% higher than that of pure ZnSnO3. Therefore, Bi-ZnSnO3 has considerable potential in detecting n-butanol gas by virtue of its excellent gas-sensing properties.


Asunto(s)
Nanosferas , 1-Butanol , Bismuto , Nanosferas/química , Oxígeno , Porosidad , Compuestos de Estaño/química
11.
Genet Med ; 23(10): 1944-1951, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34194003

RESUMEN

PURPOSE: Congenital hypothyroidism (CH) is a common congenital endocrine disorder in humans. CH-related diseases such as athyreosis, thyroid ectopy, and hypoplasia are primarily caused by dysgenic thyroid development. However, the underlying molecular mechanisms remain unknown. METHODS: To identify novel CH candidate genes, 192 CH patients were enrolled, and target sequencing of 21 known CH-related genes was performed. The remaining 98 CH patients carrying no known genes were subjected to exome sequencing (ES). The functions of the identified variants were confirmed using thyroid epithelial cells in vitro and in zebrafish model organisms in vivo. RESULTS: Four pathogenic GBP1 variations from three patients were identified. In zebrafish embryos, gbp1 knockdown caused defective thyroid primordium morphogenesis and hypothyroidism. The thyroid cells were stuck together and failed to dissociate from each other to form individual follicles in gbp1-deficient embryos. Furthermore, defects were restored with wild-type human GBP1 (hGBP1) messenger RNA (mRNA) except for mutated hGBP1 (p.H150Y, p.L187P) overexpression. GBP1 promoted ß-catenin translocation into the cytosol and suppressed the formation of cellular adhesion complexes. Suppression of cell-cell adhesion restored the thyroid primordium growth defect observed in gbp1-deficient zebrafish embryos. CONCLUSION: This study provides further understanding regarding thyroid development and shows that defective cellular remodeling could cause congenital hypothyroidism.


Asunto(s)
Hipotiroidismo Congénito , Proteínas de Unión al GTP , Disgenesias Tiroideas , Glándula Tiroides/crecimiento & desarrollo , Animales , Hipotiroidismo Congénito/genética , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/genética , Humanos , Morfogénesis , Mutación , Regulación hacia Arriba , Pez Cebra/genética
12.
Clin Genet ; 100(6): 713-721, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34564849

RESUMEN

DUOX2 is the most frequently mutated gene in patients with congenital hypothyroidism (CH) in China. However, no reliable genotype-phenotype relationship has been found in patients with DUOX2 mutations. In this study, DUOX2 mutations were screened in 266 CH patients, and the enzymatic activity of 89 DUOX2 variants was determined in vitro. Furthermore, the DUOX2 residual activity in 76 CH patients caused by DUOX2 biallelic mutations was calculated. The thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels were found to be higher and lower in patients with DUOX2 residual activity ≤22%, respectively, compared to patients with residual enzymatic activity >22%. Moreover, we interpreted the pathogenicity of DUOX2 variants by applying the ACMG classification criteria with or without PS3/BS3 evidence. The results indicated that residual DUOX2 enzymatic activity was closely related to the clinical phenotypes of CH patients caused by DUOX2 biallelic mutations. These findings suggest that the residual enzymatic activity of 22% may be a cutoff value for estimating the severity of hypothyroidism in CH patients with biallelic DUOX2 mutations. Well-established functional studies are useful and necessary to evaluate the pathogenicity of DUOX2 variants, improving the accuracy and scope of genetic consultations.


Asunto(s)
Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Oxidasas Duales/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Alelos , Oxidasas Duales/metabolismo , Activación Enzimática , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Masculino , Pruebas de Función de la Tiroides
13.
J Nat Prod ; 83(10): 2950-2959, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32989985

RESUMEN

Eight new flavonoids, including two ß-hydroxy/methoxychalcones, velutones A and B (1 and 2), two 1,3-diarylpropan-1-ols, velutols C and D (3 and 4), a dihydroxychalcone, velutone E (5), a chalcone, velutone F (6), a furanoflavanone, velutone G (7), and a furanoflavonol, velutone H (8), and 14 known compounds were isolated from Millettia velutina. Their structures were determined by high-resolution electrospray ionisation mass spectrometry (HR-ESIMS) and spectroscopic data analyses and time-dependent density functional theory electronic circular dichroism (TD-DFT-ECD) calculations. Among the isolated constituents, compound 6 exhibited the most potent inhibitory effect (IC50: 1.3 µM) against nigericin-induced IL-1ß release in THP-1 cells. The initial mechanism of action study revealed that compound 6 suppressed NLRP3 inflammasome activation via blocking ASC oligomerization without affecting the priming step, which subsequently inhibited caspase-1 activation and IL-1ß secretion. Most importantly, compound 6 exerted potent protective effects in the LPS-induced septic shock mice model by improving the survival rate of mice and suppressing serum IL-1ß release. These results demonstrated that compound 6 had the potential to be developed as a broad-spectrum NLRP3 inflammasome inhibitor for the treatment of NLRP3-related disease.


Asunto(s)
Flavonoides/farmacología , Millettia , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Caspasa 1 , Humanos , Inflamasomas , Inflamación , Lipopolisacáridos , Macrófagos , Ratones , Estructura Molecular , Células THP-1
14.
Bioorg Chem ; 97: 103693, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32120079

RESUMEN

Millettia pulchra is a renowned anti-inflammatory herbal medicine in southeast provinces of China. However, the underlying anti-inflammation mechanism remained incompletely understood. Herein, four new isoflavones, pulvones A-D and eleven reported constituents were isolated from the stems of Millettia pulchra with their structures being elucidated by HRMS and NMR analysis. The anti-inflammatory activities of pulvones A and C were further evaluated due to the better inhibitory activity on nitric oxide production in LPS-stimulated RAW264.7 cells and no obvious cytotoxicity to RAW264.7 cells. Western blot showed that pulvones A significantly decreased the levels of iNOS and COX-2 proteins and pulvones C only decreased the level of iNOS protein. ELISA analysis demonstrated that pulvones A inhibited the production of both interleukin-6 (IL-6) and IL-1ß while pulvones C showed better suppression effect on IL-1ß production in LPS-stimulated RAW264.7 cells. Then, their potential inhibitory effects on NF-κB pathway were tested in LPS-stimulated RAW264.7 cells. Immunofluorescence and western blot assay showed that pulvones A and C reduced the nuclear translocation of NF-κB(p65) and interrupted IκB phosphorylation. The ADP-Glo™ kinase assay showed pulvones A and C could directedly inhibit the IKKß kinase activity with the inhibitory rate of 40%, which were also verified by docking study. Collectively, these results suggested that pulvones A and C's anti-inflammatory effects were relevant to the interruption of NF-κB activation by inhibiting IKKß kinase.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Isoflavonas/farmacología , Macrófagos/efectos de los fármacos , Millettia/química , Animales , Antiinflamatorios/química , Inflamación/inmunología , Inflamación/patología , Isoflavonas/química , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/patología , Ratones , Simulación del Acoplamiento Molecular , FN-kappa B , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
15.
Plant Sci ; 341: 111952, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072329

RESUMEN

The group F-bZIP transcription factors (TFs) in Arabidopsis are involved in nutrient deficiency or salt stress responses. Nevertheless, our learning about the functions of group F-bZIP genes in maize remains limited. Here, we cloned a new F-bZIP gene (ZmbZIP76) from maize inbred line He344. The expression of ZmbZIP76 in maize was dramatically induced by high salt, osmotic stress and abscisic acid. Accordingly, overexpression of ZmbZIP76 increased tolerance of transgenic plants to salt and osmotic stress. In addition, ZmbZIP76 functions as a nuclear transcription factor and upregulates the expression of a range of abiotic stress-responsive genes by binding to the ACGT-containing elements, leading to enhanced reactive oxygen species (ROS) scavenging capability, increased abscisic acid level, proline content, and ratio of K+/Na+, reduced water loss rate, and membrane damage. These physiological changes caused by ZmbZIP76 ultimately enhanced tolerance of transgenic plants to salt and osmotic stress.


Asunto(s)
Ácido Abscísico , Arabidopsis , Ácido Abscísico/metabolismo , Zea mays/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías
17.
Adv Mater ; : e2314310, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655719

RESUMEN

The precise delivery of anti-seizure medications (ASM) to epileptic loci remains the major challenge to treat epilepsy without causing adverse drug reactions. The unprovoked nature of epileptic seizures raises the additional need to release ASMs in a spatiotemporal controlled manner. Targeting the oxidative stress in epileptic lesions, here the reactive oxygen species (ROS) induced in situ supramolecular assemblies that synergized bioorthogonal reactions to deliver inhibitory neurotransmitter (GABA) on-demand, are developed. Tetrazine-bearing assembly precursors undergo oxidation and selectively self-assemble under pathological conditions inside primary neurons and mice brains. Assemblies induce local accumulation of tetrazine in the hippocampus CA3 region, which allows the subsequent bioorthogonal release of inhibitory neurotransmitters. For induced acute seizures, the sustained release of GABA extends the suppression than the direct supply of GABA. In the model of permanent damage of CA3, bioorthogonal ligation on assemblies provides a reservoir of GABA that behaves prompt release upon 365 nm irradiation. Incorporated with the state-of-the-art microelectrode arrays, it is elucidated that the bioorthogonal release of GABA shifts the neuron spike waveforms to suppress seizures at the single-neuron precision. The strategy of in situ supramolecular assemblies-directed bioorthogonal prodrug activation shall be promising for the effective delivery of ASMs to treat epilepsy.

18.
Sci Adv ; 10(6): eadi9284, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324683

RESUMEN

Gasdermin D (GSDMD) serves as a vital mediator of inflammasome-driven pyroptosis. In our study, we have identified NU6300 as a specific GSDMD inhibitor that covalently interacts with cysteine-191 of GSDMD, effectively blocking its cleavage while not affecting earlier steps such as ASC oligomerization and caspase-1 processing in AIM2- and NLRC4-mediated inflammation. On the contrary, NU6300 robustly inhibits these earlier steps in NLRP3 inflammasome, confirming a unique feedback inhibition effect in the NLRP3-GSDMD pathway upon GSDMD targeting. Our study reveals a previously undefined mechanism of GSDMD inhibitors: NU6300 impairs the palmitoylation of both full-length and N-terminal GSDMD, impeding the membrane localization and oligomerization of N-terminal GSDMD. In vivo studies further demonstrate the efficacy of NU6300 in ameliorating dextran sodium sulfate-induced colitis and improving survival in lipopolysaccharide-induced sepsis. Overall, these findings highlight the potential of NU6300 as a promising lead compound for the treatment of inflammatory diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Inflamasomas/metabolismo , Cisteína/metabolismo , Gasderminas , Lipoilación
19.
Artículo en Inglés | MEDLINE | ID: mdl-38654471

RESUMEN

CONTEXT: Congenital hypothyroidism (CH) is the most common endocrine disorder in neonates, but its etiology is still poorly understood. OBJECTIVE: We performed whole exome sequencing to identify novel causative gene for CH and functional studies to validate its role in the occurrence of CH. METHODS: Whole exome sequencing in 98 CH patients not harboring known CH candidate genes and bioinformatic analysis were performed. Functional analysis was performed using morpholino, a synthetic short antisense oligonucleotide that contains 25 DNA bases on a methylene morpholine backbone, in zebrafish and CRISPR‒Cas9-mediated gene knockout in mice. RESULTS: Eukaryotic translation initiation factor 4B (EIF4B) was identified as the most promising candidate gene. The EIF4B gene was inherited in an autosomal recessive model, and one patient with thyroid dysgenesis carried EIF4B biallelic variants (p.S430F/p.P328L). In zebrafish, the knockdown of eif4ba/b expression caused thyroid dysgenesis and growth retardation. Thyroid hormone levels were significantly decreased in morphants compared with controls. Thyroxine treatment in morphants partially rescued growth retardation. In mice, the homozygous conceptuses of Eif4b+/- parents did not survive. Eif4b knockout embryos showed severe growth retardation, including thyroid dysgenesis and embryonic lethality before E18.5. CONCLUSION: These experimental data supported a role for EIF4B function in the pathogenesis of the hypothyroid phenotype seen in CH patients. Our work indicated that EIF4B was identified as a novel candidate gene in CH. EIF4B is essential for animal survival, but further studies are needed to validate its role in the pathogenesis of CH.

20.
J Med Chem ; 67(9): 7516-7538, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38686671

RESUMEN

The NLRP3 inflammasome has been recognized as a promising therapeutic target in drug discovery for inflammatory diseases. Our initial research identified a natural sesquiterpene isoalantolactone (IAL) as the active scaffold targeting NLRP3 inflammasome. To improve its activity and metabolic stability, a total of 64 IAL derivatives were designed and synthesized. Among them, compound 49 emerged as the optimal lead, displaying the most potent inhibitory efficacy on nigericin-induced IL-1ß release in THP-1 cells, with an IC50 value of 0.29 µM, approximately 27-fold more potent than that of IAL (IC50: 7.86 µM), and exhibiting higher metabolic stability. Importantly, 49 remarkably improved DSS-induced ulcerative colitis in vivo. Mechanistically, we demonstrated that 49 covalently bound to cysteine 279 in the NACHT domain of NLRP3, thereby inhibiting the assembly and activation of NLRP3 inflammasome. These results provided compelling evidence to further advance the development of more potent NLRP3 inhibitors based on this scaffold.


Asunto(s)
Diseño de Fármacos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Sesquiterpenos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Animales , Sesquiterpenos/farmacología , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Ratones , Relación Estructura-Actividad , Interleucina-1beta/metabolismo , Células THP-1 , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA