Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 608(7922): 317-323, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948711

RESUMEN

Compared with their three-dimensional (3D) counterparts, low-dimensional metal halide perovskites (2D and quasi-2D; B2An-1MnX3n+1, such as B = R-NH3+, A = HC(NH2)2+, Cs+; M = Pb2+, Sn2+; X = Cl-, Br-, I-) with periodic inorganic-organic structures have shown promising stability and hysteresis-free electrical performance1-6. However, their unique multiple-quantum-well structure limits the device efficiencies because of the grain boundaries and randomly oriented quantum wells in polycrystals7. In single crystals, the carrier transport through the thickness direction is hindered by the layered insulating organic spacers8. Furthermore, the strong quantum confinement from the organic spacers limits the generation and transport of free carriers9,10. Also, lead-free metal halide perovskites have been developed but their device performance is limited by their low crystallinity and structural instability11. Here we report a low-dimensional metal halide perovskite BA2MAn-1SnnI3n+1 (BA, butylammonium; MA, methylammonium; n = 1, 3, 5) superlattice by chemical epitaxy. The inorganic slabs are aligned vertical to the substrate and interconnected in a criss-cross 2D network parallel to the substrate, leading to efficient carrier transport in three dimensions. A lattice-mismatched substrate compresses the organic spacers, which weakens the quantum confinement. The performance of a superlattice solar cell has been certified under the quasi-steady state, showing a stable 12.36% photoelectric conversion efficiency. Moreover, an intraband exciton relaxation process may have yielded an unusually high open-circuit voltage (VOC).

2.
Nature ; 583(7818): 790-795, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728239

RESUMEN

Organic-inorganic hybrid perovskites have electronic and optoelectronic properties that make them appealing in many device applications1-4. Although many approaches focus on polycrystalline materials5-7, single-crystal hybrid perovskites show improved carrier transport and enhanced stability over their polycrystalline counterparts, due to their orientation-dependent transport behaviour8-10 and lower defect concentrations11,12. However, the fabrication of single-crystal hybrid perovskites, and controlling their morphology and composition, are challenging12. Here we report a solution-based lithography-assisted epitaxial-growth-and-transfer method for fabricating single-crystal hybrid perovskites on arbitrary substrates, with precise control of their thickness (from about 600 nanometres to about 100 micrometres), area (continuous thin films up to about 5.5 centimetres by 5.5 centimetres), and composition gradient in the thickness direction (for example, from methylammonium lead iodide, MAPbI3, to MAPb0.5Sn0.5I3). The transferred single-crystal hybrid perovskites are of comparable quality to those directly grown on epitaxial substrates, and are mechanically flexible depending on the thickness. Lead-tin gradient alloying allows the formation of a graded electronic bandgap, which increases the carrier mobility and impedes carrier recombination. Devices based on these single-crystal hybrid perovskites show not only high stability against various degradation factors but also good performance (for example, solar cells based on lead-tin-gradient structures with an average efficiency of 18.77 per cent).

3.
J Am Chem Soc ; 146(42): 28635-28641, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39382962

RESUMEN

The advantages of ammonia as a hydrogen carrier have led to proposals for on-site hydrogen production through its decomposition. Rapid cold start of ammonia decomposition is crucial for applications such as ammonia-powered vehicles, but conventional heating methods are challenged by the high decomposition temperature of ammonia. In this study, we successfully achieved the rapid cold start of ammonia decomposition using Co nanoparticle catalysts driven by magnetic induction heating, demonstrating excellent catalytic performance and stability. The magnetic induction heating-driven ammonia decomposition system was integrated with a hydrogen fuel cell, proving its ability to achieve the cold start of ammonia decomposition within 10 s, as demonstrated by comparative experiments using 75% H2-25% N2 from a gas cylinder as the control. This study provides a deeper understanding of hysteresis heating catalysis, promoting the practical use of ammonia as a hydrogen carrier for rapid hydrogen production in the energy industry.

4.
J Am Chem Soc ; 146(32): 22387-22395, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088737

RESUMEN

Preventing ion migration in perovskite photovoltaics is key to achieving stable and efficient devices. The activation energy for ion migration is affected by the chemical environment surrounding the ions. Thus, the migration of organic cations in lead halide perovskites can be mitigated by engineering their local interactions, for example through hydrogen bonding. Ion migration also leads to ionic losses via interfacial reactions. Undesirable reactivities of the organic cations can be eliminated by introducing protecting groups. In this work, we report bis(2-oxo-3-oxazolidinyl) phosphinic chloride (BOP-Cl) as a perovskite ink additive with the following benefits: (1) The phosphoryl and two oxo groups form six-membered intermolecular hydrogen-bonded rings with the formamidinium cation (FA), mitigating ion migrations. (2) The hydrogen bonding reduces the electrophilicity of the ammonium protons by donating electron density, therefore reducing its reactivity with the surface oxygen on the metal oxide. Furthermore, the molecule can react to form a protecting group on the nucleophilic oxygen at the tin oxide transport layer surface through the elimination of chlorine. As a result, we achieve perovskite solar cells with an efficiency of 25.0% and improved MPP stability T93 = 1200 h at 40-45 °C compared to a control device (T86 = 550 h). In addition, we show a negative correlation between the strength of hydrogen bonding of different phosphine oxide derivatives to the organic cations and the degree of metastable behavior (e.g., initial burn-in) of the device.

5.
J Med Virol ; 96(9): e29901, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39210614

RESUMEN

The mortality and hospitalization rate by COVID-19 dropped significantly currently, but its seasonal outbreaks make antiviral treatment still vital. The mortality and hospitazation rate by COVID-19 dropped significantly currently, but its seasonal ourbreaks make antiviral treatment still vital. In our study, syrian golden hamsters were treated with molnupiravir and interferons (IFNs) after SARS-CoV-2 infection. Their weight changes, pathological changes, virus replication and inflammation levels were evaluated. In the IFNs single treatment, only IFN-α group reduced viral load (p < 0.05) and virus titer in hamster lungs. The TNF-α expression decreased significantly in both IFNs treatment at 2dpi. Histological and immunofluorescence results showed lung damage in the IFNs groups were milder at 4dpi. In the molnupiravir/IFN-α combination treatment, weight loss and virus replication in lung were significantly decreased in the mono-molnupiravir group and combination group (p < 0.05), the expression of IL-6, TNF-α, IL-1ß and MIP-1α also decreased significantly (p < 0.05), but the combination treatment was not more effective than the mono-molnupiravir treatment. Histological and immunofluorescence results showed the lung damage and inflammation in mono-molnupiravir and combination groups were milder. In summary, IFNs treatment had anti-inflammatory effect against SARS-CoV-2, only IFN-α showed a weak antiviral effect. Molnupiravir/IFN-α combination treatment was effective against SARS-CoV-2 but was not superior to mono-molnupiravir treatment. IFN-α could be considered for immunocompromised patients to stimulate and activate early immune responses.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Hidroxilaminas , Pulmón , Mesocricetus , SARS-CoV-2 , Carga Viral , Replicación Viral , Animales , Antivirales/uso terapéutico , Antivirales/farmacología , Pulmón/virología , Pulmón/patología , Pulmón/efectos de los fármacos , Replicación Viral/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Carga Viral/efectos de los fármacos , Hidroxilaminas/uso terapéutico , Hidroxilaminas/farmacología , Cricetinae , Modelos Animales de Enfermedad , COVID-19/inmunología , COVID-19/virología , Citidina/análogos & derivados , Citidina/uso terapéutico , Citidina/farmacología , Quimioterapia Combinada , Interferón-alfa/uso terapéutico , Interferón-alfa/farmacología , Citocinas/metabolismo , Interferones/uso terapéutico , Masculino , Leucina/análogos & derivados , Leucina/uso terapéutico , Leucina/farmacología
6.
Exp Dermatol ; 33(1): e15006, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284200

RESUMEN

Excessive ultraviolet B ray (UVB) exposure to sunlight results in skin photoageing. Our previous research showed that a Q-switched 1064 nm Nd: YAG laser can alleviate skin barrier damage through miR-24-3p. However, the role of autophagy in the laser treatment of skin photoageing is still unclear. This study aims to investigate whether autophagy is involved in the mechanism of Q-switched 1064 nm Nd: YAG in the treatment of skin ageing. In vitro, primary human dermal fibroblast (HDF) cells were irradiated with different doses of UVB to establish a cell model of skin photoageing. In vivo, SKH-1 hairless mice were irradiated with UVB to establish a skin photoageing mouse model and irradiated with laser. The oxidative stress and autophagy levels were detected by western blot, immunofluorescence and flow cytometer. String was used to predict the interaction protein of TGF-ß1, and CO-IP and GST-pull down were used to detect the binding relationship between TGFß1 and ITGB1. In vitro, UVB irradiation reduced HDF cell viability, arrested cell cycle, induced cell senescence and oxidative stress compared with the control group. Laser treatment reversed cell viability, senescence and oxidative stress induced by UVB irradiation and activated autophagy. Autophagy agonists or inhibitors can enhance or attenuate the changes induced by laser treatment, respectively. In vivo, UVB irradiation caused hyperkeratosis, dermis destruction, collagen fibres reduction, increased cellular senescence and activation of oxidative stress in hairless mice. Laser treatment thinned the stratum corneum of skin tissue, increased collagen synthesis and autophagy in the dermis, and decreased the level of oxidative stress. Autophagy agonist rapamycin and autophagy inhibitor 3-methyladenine (3-MA) can enhance or attenuate the effects of laser treatment on the skin, respectively. Also, we identified a direct interaction between TGFB1 and ITGB1 and participated in laser irradiation-activated autophagy, thereby inhibiting UVB-mediated oxidative stress further reducing skin ageing. Q-switched 1064 nm Nd: YAG laser treatment inhibited UVB-induced oxidative stress and restored skin photoageing by activating autophagy, and TGFß1 and ITGB1 directly incorporated and participated in this process.


Asunto(s)
Integrina beta1 , Láseres de Estado Sólido , Envejecimiento de la Piel , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Ratones , Autofagia , Colágeno , Láseres de Estado Sólido/uso terapéutico , Ratones Pelados , Factor de Crecimiento Transformador beta1/genética , Integrina beta1/genética
7.
Phys Rev Lett ; 133(6): 066401, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39178441

RESUMEN

Recent discovery of superconductivity in infinite-layer nickelates has ignited renewed theoretical and experimental interest in the role of electronic correlations in their properties. Here, using first-principles simulations, we show that the parent compound of the nickelate family, LaNiO_{2}, hosts competing low-energy stripe phases, similar to doped cuprates. The stripe states are shown to be driven by multiorbital electronic mechanisms and Peierls distortions. Our study indicates that both strong correlations and electron-phonon coupling effects play a key role in the physics of infinite-layer nickelates, and sheds light on the microscopic origin of electronic inhomogeneity and the lack of long-range order in the nickelates.

8.
Environ Sci Technol ; 58(8): 3908-3918, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38329000

RESUMEN

The heterogeneous photodegradation behavior of liquid crystal monomers (LCMs) in standard dust (standard reference material, SRM 2583) and environmental dust was investigated. The measured photodegradation ratios for 23 LCMs in SRM and environmental dust in 12 h were 11.1 ± 1.8 to 23.2 ± 1.1% and 8.7 ± 0.5 to 24.0 ± 2.8%, respectively. The degradation behavior of different LCM compounds varied depending on their structural properties. A quantitative structure-activity relationship model for predicting the degradation ratio of LCMs in SRM dust was established, which revealed that the molecular descriptors related to molecular polarizability, electronegativity, and molecular mass were closely associated with LCMs' photodegradation. The photodegradation products of the LCM compound 4'-propoxy-4-biphenylcarbonitrile (PBIPHCN) in dust, including •OH oxidation, C-O bond cleavage, and ring-opening products, were identified by nontarget analysis, and the corresponding degradation pathways were suggested. Some of the identified products, such as 4'-hydroxyethoxy-4-biphenylcarbonitrile, showed predicted toxicity (with an oral rat lethal dose of 50%) comparable to that of PBIPHCN. The half-lives of the studied LCMs in SRM dust were estimated at 32.2-82.5 h by fitting an exponential decay curve to the observed photodegradation data. The photodegradation mechanisms of LCMs in dust were revealed for the first time, enhancing the understanding of LCMs' environmental behavior and risks.


Asunto(s)
Polvo , Cristales Líquidos , Animales , Ratas , Relación Estructura-Actividad Cuantitativa , Fotólisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-39152762

RESUMEN

BACKGROUND AND AIM: We aimed to investigate the effect of metabolic dysfunction-associated steatotic liver disease (MASLD) on three-dose BNT162b2 immunogenicity to the omicron variant. METHODS: Adult recipients of three doses of BNT162b2 were prospectively recruited between May and December 2021. The serology of the neutralizing antibody by live virus microneutralization (vMN) to the omicron variant was measured at baseline, day 180, and day 360 after the first dose. The primary outcome was seroconversion (vMN titer ≥ 10) at day 360. Exposure of interest was MASLD, defined as hepatic steatosis (controlled attenuation parameter ≥ 248 dB/m on transient elastography) plus at least one of five cardiometabolic risk factors. Subjects with prior COVID-19 were excluded. A multivariable logistic regression model was used to derive the adjusted odds ratio of seroconversion with MASLD by adjusting for age, sex, antibiotic use, and proton pump inhibitor use. RESULTS: One hundred forty-eight BNT162b2 recipients (male: 48 [32.4%]; median age: 51.0 years [interquartile range, IQR: 44.5-57.3]) were recruited. The median time from the first dose to the third dose was 8.5 months (IQR: 7.9-8.9). MASLD subjects had a lower seroconversion rate than non-MASLD ones (89.6% vs 99.0%; P = 0.007). MASLD was the only independent risk factor for seroconversion (adjusted odds ratio: 0.051, 95% confidence interval: 0.002-0.440). Subgroup analysis of immunogenicity at 4 months after the third dose shows significantly lower vMN titer (13.06 [IQR: 7.69-22.20] vs 33.49 [IQR: 24.05-46.53]; P = 0.004) and seroconversion rate (76.9% vs 97.4%; P = 0.016) in MASLD than non-MASLD subjects, but not within 4 months from the third dose (vMN titer: 46.87 [IQR: 33.12-66.02] vs 41.86 [IQR: 34.47-50.91], P = 0.240; seroconversion rate: 94.3% vs 100%, P = 0.131). CONCLUSION: Metabolic dysfunction-associated steatotic liver disease was a risk factor for poorer immunogenicity to the omicron variant, with a more pronounced waning effect compared among three-dose BNT162b2 recipients.

10.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38189614

RESUMEN

The recent development of accurate and efficient semilocal density functionals on the third rung of Jacob's ladder of density functional theory, such as the revised regularized strongly constrained and appropriately normed (r2SCAN) density functional, could enable rapid and highly reliable prediction of the elasticity and temperature dependence of thermophysical parameters of refractory elements and their intermetallic compounds using the quasi-harmonic approximation (QHA). Here, we present a comparative evaluation of equilibrium cell volumes, cohesive energy, mechanical moduli, and thermophysical properties (Debye temperature and thermal expansion coefficient) for 22 transition metals using semilocal density functionals, including the local density approximation (LDA), Perdew-Burke-Ernzerhof (PBE) and PBEsol generalized gradient approximations (GGAs), and the r2SCAN meta-GGA. PBEsol and r2SCAN deliver the same level of accuracies for structural, mechanical, and thermophysical properties. PBE and r2SCAN perform better than LDA and PBEsol for calculating cohesive energies of transition metals. Among the tested density functionals, r2SCAN provides an overall well-balanced performance for reliably computing cell volumes, cohesive energies, mechanical properties, and thermophysical properties of various 3d, 4d, and 5d transition metals using QHA. Therefore, we recommend that r2SCAN could be employed as a workhorse method to evaluate thermophysical properties of transition metal compounds and alloys in high throughput workflows.

11.
Biochem Genet ; 62(2): 1087-1102, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37532836

RESUMEN

Actinomycetes are remarkable natural sources of active natural molecules and enzymes of considerable industrial value. Streptomyces mobaraensis is the first microorganism found to produce transglutaminase with broad industrial applications. Although transglutaminase in S. mobaraensis has been well studied over the past three decades, the genome of S. mobaraensis and its secondary metabolic potential were poorly reported. Here, we presented the complete genome of S. mobaraensis DSM40587 obtained from the German Collection of Microorganisms and Cell Cultures GmbH. It contains a linear chromosome of 7,633,041 bp and a circular plasmid of 23,857 bp. The chromosome with an average GC content of 73.49% was predicted to harbour 6683 protein-coding genes, seven rRNA and 69 tRNA genes. Comparative genomic analysis reveals its meaningful genomic characterisation. A comprehensive bioinformatics investigation identifies 35 putative BGCs (biosynthesis gene clusters) involved in synthesising various secondary metabolites. Of these, 13 clusters showed high similarity (> 55%) to known BGCs coding for polyketides, nonribosomal peptides, hopene, RiPP (Ribosomally synthesized and post-translationally modified peptides), and others. Furthermore, these BGCs with over 65% similarity to the known BGCs were analysed in detail. The complete genome of S. mobaraensis DSM40587 reveals its capacity to yield diverse bioactive natural products and provides additional insights into discovering novel secondary metabolites.

12.
Plant Dis ; 108(7): 2073-2080, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38389384

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious disease that threatens wheat production globally. It is imperative to explore novel resistance genes to control this disease by developing and planting resistant varieties. Here, we identified a wheat-Dasypyrum villosum 3V (3D) disomic substitution line, NAU3815 (2n = 42), with a high level of powdery mildew resistance at both the seedling and adult-plant stages. Subsequently, NAU3815 was used to generate recombination between chromosomes 3V and 3D. Through genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and 3VS- and 3VL-specific markers analysis, four introgression lines were developed from the selfing progenies of 3V and 3D double monosomic line NAU3816, which was derived from the F1 hybrids of NAU3815/NAU0686. There were t3VS (3D) ditelosomic substitution line NAU3817, t3VL (3D) ditelosomic substitution line NAU3818, homozygous T3DL·3VS translocation line NAU3819, and homozygous T3DS·3VL translocation line NAU3820. Powdery mildew tests of these lines confirmed the presence of an all-stage and broad-spectrum powdery mildew resistance gene, Pm3VS, located on chromosome arm 3VS. When compared with the recurrent parent NAU0686 plants, the T3DL·3VS translocation line NAU3819 showed no obvious negative effect on yield-related traits. However, the introduction of the T3DL·3VS translocated chromosome had a strong effect on reducing the flag-leaf length. Consequently, the T3DL·3VS translocation line NAU3819 provides a new germplasm in breeding for both resistance and plant architecture.


Asunto(s)
Ascomicetos , Cromosomas de las Plantas , Resistencia a la Enfermedad , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Ascomicetos/fisiología , Ascomicetos/genética , Cromosomas de las Plantas/genética , Poaceae/genética , Poaceae/microbiología , Genes de Plantas/genética , Introgresión Genética/genética
13.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473829

RESUMEN

CoronaVac immunogenicity decreases with time, and we aimed to investigate whether gut microbiota associate with longer-term immunogenicity of CoronaVac. This was a prospective cohort study recruiting two-dose CoronaVac recipients from three centres in Hong Kong. We collected blood samples at baseline and day 180 after the first dose and used chemiluminescence immunoassay to test for neutralizing antibodies (NAbs) against the receptor-binding domain (RBD) of wild-type SARS-CoV-2 virus. We performed shotgun metagenomic sequencing performed on baseline stool samples. The primary outcome was the NAb seroconversion rate (seropositivity defined as NAb ≥ 15AU/mL) at day 180. Linear discriminant analysis [LDA] effect size analysis was used to identify putative bacterial species and metabolic pathways. A univariate logistic regression model was used to derive the odds ratio (OR) of seropositivity with bacterial species. Of 119 CoronaVac recipients (median age: 53.4 years [IQR: 47.8-61.3]; male: 39 [32.8%]), only 8 (6.7%) remained seropositive at 6 months after vaccination. Bacteroides uniformis (log10LDA score = 4.39) and Bacteroides eggerthii (log10LDA score = 3.89) were significantly enriched in seropositive than seronegative participants. Seropositivity was associated with B. eggerthii (OR: 5.73; 95% CI: 1.32-29.55; p = 0.022) and B. uniformis with borderline significance (OR: 3.27; 95% CI: 0.73-14.72; p = 0.110). Additionally, B. uniformis was positively correlated with most enriched metabolic pathways in seropositive vaccinees, including the superpathway of adenosine nucleotide de novo biosynthesis I (log10LDA score = 2.88) and II (log10LDA score = 2.91), as well as pathways related to vitamin B biosynthesis, all of which are known to promote immune functions. In conclusion, certain gut bacterial species (B. eggerthii and B. uniformis) and metabolic pathways were associated with longer-term CoronaVac immunogenicity.


Asunto(s)
Vacunas contra la COVID-19 , Microbioma Gastrointestinal , Vacunas de Productos Inactivados , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adenosina , Anticuerpos Neutralizantes , Anticuerpos Antivirales
14.
BMC Genomics ; 24(1): 110, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918797

RESUMEN

BACKGROUND: Eggs represent important sources of protein and are widely loved by consumers. Egg yolk taste is an important index for egg selection, and the moisture content of the egg yolk affects the taste. To understand the molecular mechanism underlying egg yolk moisture content, this study determined the phenotype and heritability of egg yolk water content and conducted a genome-wide association study (GWAS) using a mixed linear model. RESULTS: We determined the phenotype and heritability of thermogelled egg yolk water content (TWC) and found that the average TWC was 47.73%. Moreover, significant variations occurred (41.06-57.12%), and the heritability was 0.11, which indicates medium-low heritability. Through the GWAS, 48 single nucleotide polymorphisms (SNPs) related to TWC (20 significantly, 28 suggestively) were obtained, and they were mainly located on chromosomes 10 and 13. We identified 36 candidate genes based on gene function and found that they were mainly involved in regulating fat, protein, and water content and embryonic development. FGF9, PIAS1, FEM1B, NOX5, GLCE, VDAC1, IGFBP7, and THOC5 were involved in lipid formation and regulation; AP3S2, GNPDA1, HSPA4, AP1B1, CABP7, EEF1D, SYTL3, PPP2CA, SKP1, and UBE2B were involved in protein folding and hydrolysis; and CSF2, SOWAHA, GDF9, FSTL4, RAPGEF6, PAQR5, and ZMAT5 were related to embryonic development and egg production. Moreover, MICU2, ITGA11, WDR76, BLM, ANPEP, TECRL, EWSR1, and P4HA2 were related to yolk quality, while ITGA11, WDR76, BLM, and ANPEP were potentially significantly involved in egg yolk water content and thus deserve further attention and research. In addition, this study identified a 19.31-19.92 Mb genome region on GGA10, and a linkage disequilibrium analysis identified strong correlations within this region. Thus, GGA10 may represent a candidate region for TWC traits. CONCLUSION: The molecular genetic mechanism involved in TWC was revealed through heritability measurements and GWAS, which identified a series of SNPs, candidate genes, and candidate regions related to TWC. These results provide insights on the molecular mechanism of egg yolk moisture content and may aid in the development of new egg traits.


Asunto(s)
Yema de Huevo , Estudio de Asociación del Genoma Completo , Animales , Estudio de Asociación del Genoma Completo/métodos , Pollos/genética , Genómica , Proteínas/genética , Fenotipo , Agua , Polimorfismo de Nucleótido Simple
15.
BMC Genomics ; 24(1): 523, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667177

RESUMEN

BACKGROUND: Ubiquitination controls almost all cellular processes. The dysregulation of ubiquitination signals is closely associated with the initiation and progression of multiple diseases. However, there is little comprehensive research on the interaction and potential function of ubiquitination regulators (UBRs) in spermatogenesis and cancer. METHODS: We systematically characterized the mRNA and protein expression of UBRs across tissues and further evaluated their roles in testicular development and spermatogenesis. Subsequently, we explored the genetic alterations, expression perturbations, cancer hallmark-related pathways, and clinical relevance of UBRs in pan-cancer. RESULTS: This work reveals heterogeneity in the expression patterns of UBRs across tissues, and the expression pattern in testis is the most distinct. UBRs are dynamically expressed during testis development, which are critical for normal spermatogenesis. Furthermore, UBRs have widespread genetic alterations and expression perturbations in pan-cancer. The expression of 79 UBRs was identified to be closely correlated with the activity of 32 cancer hallmark-related pathways, and ten hub genes were screened for further clinical relevance analysis by a network-based method. More than 90% of UBRs can affect the survival of cancer patients, and hub genes have an excellent prognostic classification for specific cancer types. CONCLUSIONS: Our study provides a comprehensive analysis of UBRs in spermatogenesis and pan-cancer, which can build a foundation for understanding male infertility and developing cancer drugs in the aspect of ubiquitination.


Asunto(s)
Infertilidad Masculina , Neoplasias , Humanos , Masculino , Neoplasias/genética , Ubiquitinación , Relevancia Clínica , Cognición
16.
BMC Genomics ; 24(1): 31, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658492

RESUMEN

BACKGROUND: The quality of poultry eggshells is closely related to the profitability of egg production. Eggshell speckles reflect an important quality trait that influences egg appearance and customer preference. However, the mechanism of speckle formation remains poorly understood. In this study, we systematically compared serum immune and antioxidant indices of hens laying speckled and normal eggs. Transcriptome and methylome analyses were used to elucidate the mechanism of eggshell speckle formation. RESULTS: The results showed that seven differentially expressed genes (DEGs) were identified between the normal and speckle groups. Gene set enrichment analysis (GSEA) revealed that the expressed genes were mainly enriched in the calcium signaling pathway, focal adhesion, and MAPK signaling pathway. Additionally, 282 differentially methylated genes (DMGs) were detected, of which 15 genes were associated with aging, including ARNTL, CAV1, and GCLC. Pathway analysis showed that the DMGs were associated with T cell-mediated immunity, response to oxidative stress, and cellular response to DNA damage stimulus. Integrative analysis of transcriptome and DNA methylation data identified BFSP2 as the only overlapping gene, which was expressed at low levels and hypomethylated in the speckle group. CONCLUSIONS: Overall, these results indicate that aging- and immune-related genes and pathways play a crucial role in the formation of speckled eggshells, providing useful information for improving eggshell quality.


Asunto(s)
Cáscara de Huevo , Transcriptoma , Animales , Femenino , Cáscara de Huevo/metabolismo , Epigenoma , Pollos/genética , Huevos
17.
BMC Genomics ; 24(1): 530, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679681

RESUMEN

BACKGROUND: Ligilactobacillus salivarius has been frequently isolated from the gut microbiota of humans and domesticated animals and has been studied as a candidate probiotic. Badger (Meles meles) is known as a "generalist" species that consumes complex foods and exhibits tolerance and resistance to certain pathogens, which can be partly attributed to the beneficial microbes such as L. salivarius in the gut microbiota. However, our understanding of the beneficial traits and genomic features of badger-originated L. salivarius remains elusive. RESULTS: In this study, nine L. salivarius strains were isolated from wild badgers' feces, one of which exhibited good probiotic properties. Complete genomes of the nine L. salivarius strains were generated, and comparative genomic analysis was performed with the publicly available complete genomes of L. salivarius obtained from humans and domesticated animals. The strains originating from badgers harbored a larger genome, a higher number of protein-coding sequences, and functionally annotated genes than those originating from humans and chickens. The pan-genome phylogenetic tree demonstrated that the strains originating from badgers formed a separate clade, and totally 412 gene families (12.6% of the total gene families in the pan-genome) were identified as genes gained by the last common ancestor of the badger group. The badger group harbored significantly more gene families responsible for the degradation of complex carbohydrate substrates and production of polysaccharides than strains from other hosts; many of these were acquired by gene gain events. CONCLUSIONS: A candidate probiotic and nine L. salivarius complete genomes were obtained from the badgers' gut microbiome, and several beneficial genes were identified to be specifically present in the badger-originated strains that were gained in the evolution. Our study provides novel insights into the adaptation of L. salivarius to the intestinal habitat of wild badgers and provides valuable strain and genome resources for the development of L. salivarius as a probiotic.


Asunto(s)
Ligilactobacillus salivarius , Animales , Humanos , Adaptación al Huésped , Filogenia , Pollos , Aclimatación , Animales Domésticos
18.
Theor Appl Genet ; 136(1): 10, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36658294

RESUMEN

KEY MESSAGE: A new functional Pm21 haplotype, Pm21(8#), was cloned from the new wheat-H. villosa translocation line T6VS(8#)·6DL, which confers the same strong resistance to powdery mildew through a different resistance mechanism. Broad-spectrum disease resistance genes are desirable in crop breeding for conferring stable, durable resistance in field production. Pm21(4#) is a gene introduced from wild Haynaldia villosa into wheat that confers broad-spectrum resistance to wheat powdery mildew and has been widely used in wheat production for approximately 30 years. The discovery and transfer of new functional haplotypes of Pm21 into wheat will expand its genetic diversity in production and avoid the breakdown of resistance conferred by a single gene on a large scale. Pm21(4#) previously found from T6VS(4#)·6AL has been cloned. In this study, a new wheat-H. villosa translocation, T6VS(8#)·6DL, was identified. A new functional Pm21 haplotype, designated Pm21(8#), was cloned and characterized. The genomic structures and the splicing patterns of Pm21(4#) and Pm21(8#) were different, and widespread sequence diversity was observed in the gene coding region and the promoter region. In the field, Pm21(8#) conferred resistance to Blumeria graminis f. sp. tritici (Bgt), similar to Pm21(4#), indicating that Pm21(8#) was also a resistance gene. However, Bgt development during the infection stage was obviously different between Pm21(4#)- and Pm21(8#)-containing materials under the microscopic observation. Pm21(4#) inhibited the formation of haustoria and the development of hyphae in the initial infection stage, while Pm21(8#) limited the growth of hyphae and inhibited the formation of conidiophores in the late infection stage. Therefore, Pm21(8#) is a new functional Pm21 haplotype that provides a new gene resource for wheat breeding.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Triticum/metabolismo , Haplotipos , Poaceae/genética , Variación Genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética
19.
BMC Cardiovasc Disord ; 23(1): 259, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208627

RESUMEN

BACKGROUND: Post cardiac injury syndrome (PCIS) is characterized by the development of pericarditis with or without pericardial effusion due to a recent cardiac injury. The relatively low incidence makes diagnosis of PCIS after implantation of a pacemaker easily be overlooked or underestimated. This report describes one typical case of PCIS. CASE PRESENTATION: We present a case report of a 94-year-old male with a history of sick sinus syndrome managed with a dual-chamber pacemaker who presented with PCIS after two months of pacemaker implantation. He gradually developed chest discomfort, weakness, tachycardia and paroxysmal nocturnal dyspnea and cardiac tamponade after two months of pacemaker. Post-cardiac injury syndrome related to dual-chamber pacemaker implantation was considered based on exclusion of other possible causes of pericarditis. His therapy was drainage of pericardial fluid and managed with a combination of colchicine and support therapy. He was placed on long-term colchicine therapy to prevent any recurrences. CONCLUSION: This case illustrated that PCIS can occur after minor myocardial injury, and that the possibility of PCIS should be considered if there is a history of possible cardiac insult.


Asunto(s)
Taponamiento Cardíaco , Lesiones Cardíacas , Marcapaso Artificial , Derrame Pericárdico , Pericarditis , Masculino , Humanos , Anciano de 80 o más Años , Marcapaso Artificial/efectos adversos , Pericarditis/diagnóstico , Pericarditis/etiología , Pericarditis/terapia , Lesiones Cardíacas/diagnóstico por imagen , Lesiones Cardíacas/etiología , Lesiones Cardíacas/terapia , Derrame Pericárdico/diagnóstico por imagen , Derrame Pericárdico/etiología , Taponamiento Cardíaco/diagnóstico por imagen , Taponamiento Cardíaco/etiología , Taponamiento Cardíaco/terapia
20.
J Nat Prod ; 86(1): 119-130, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36579935

RESUMEN

Nine new sesquiterpenes, hyperhubeins A-I (1-9), and 14 known analogues (10-23) were isolated from the aerial portions of Hypericum hubeiense. Their structures and absolute configurations were determined unambiguously via spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism calculations. Compounds 1-3 possess an unprecedented sesquiterpene carbon skeleton. Further, a plausible biosynthetic pathway from farnesyl diphosphate (FPP) is proposed. The isolated phytochemicals were evaluated for neuroprotective and anti-neuroinflammatory properties in vitro. Compounds 1, 2, 5-8, 14, and 21 displayed notable neuroprotective activity against hydrogen peroxide (H2O2)-induced lesions in PC-12 cells at 10 µM. Additionally, compounds 1, 2, 12, and 13 exhibited inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 microglial cells, with their IC50 values ranging from 4.92 to 6.81 µM. Possible interactions between these bioactive compounds and inducible nitric oxide synthase (iNOS) were predicted via molecular docking. Moreover, Western blotting indicated that compound 12 exerted anti-neuroinflammatory activity by suppressing LPS-stimulated expression of toll-like receptor-4 (TLR-4) and inhibiting consequent activation of nuclear factor-kappa-B (NF-κB) signaling.


Asunto(s)
Hypericum , Sesquiterpenos , Antiinflamatorios/química , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Microglía/metabolismo , Dicroismo Circular , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA