Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 11, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200551

RESUMEN

Dysregulation of R-loop homeostasis is closely related to various human diseases, including cancer. However, the causality of aberrant R-loops in tumor progression remains unclear. In this study, using single-cell RNA-sequencing datasets from lung adenocarcinoma (LUAD), we constructed an R-loop scoring model to characterize the R-loop state according to the identified R-loop regulators related to EGFR mutations, tissue origins, and TNM stage. We then evaluated the relationships of the R-loop score with the tumor microenvironment (TME) and treatment response. Furthermore, the potential roles of FANCI-mediated R-loops in LUAD were explored using a series of in vitro experiments. Results showed that malignant cells with low R-loop scores displayed glycolysis and epithelial-mesenchymal transition pathway activation and immune escape promotion, thereby hampering the antitumor therapeutic effects. Cell communication analysis suggested that low R-loop scores contributed to T cell exhaustion. We subsequently validated the prognostic value of R-loop scores by using bulk transcriptome datasets across 33 tumor types. The R-loop scoring model well predicted patients' therapeutic response to targeted therapy, chemotherapy, or immunotherapy in 32 independent cohorts. Remarkably, changes in R-loop distribution mediated by FANCI deficiency blocked the activity of Ras signaling pathway, suppressing tumor-cell proliferation and dissemination. In conclusion, this study reveals the underlying molecular mechanism of metabolic reprogramming and T cell exhaustion under R-loop score patterns, and the changes in R-loops mediated by R-loop regulators resulting in tumor progression. Therefore, incorporating anticancer methods based on R-loop or R-loop regulators into the treatment schemes of precision medicine may be beneficial.


Asunto(s)
Adenocarcinoma del Pulmón , Anemia de Fanconi , Neoplasias Pulmonares , Humanos , Estructuras R-Loop , Reprogramación Metabólica , Evasión Inmune , Adenocarcinoma del Pulmón/genética , Comunicación Celular , Análisis de la Célula Individual , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
2.
Int J Cancer ; 154(10): 1802-1813, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38268429

RESUMEN

Ductal carcinoma in situ with microinvasion (DCISM) is a challenging subtype of breast cancer with controversial invasiveness and prognosis. Accurate diagnosis of DCISM from ductal carcinoma in situ (DCIS) is crucial for optimal treatment and improved clinical outcomes. However, there are often some suspicious small cancer nests in DCIS, and it is difficult to diagnose the presence of intact myoepithelium by conventional hematoxylin and eosin (H&E) stained images. Although a variety of biomarkers are available for immunohistochemical (IHC) staining of myoepithelial cells, no single biomarker is consistently sensitive to all tumor lesions. Here, we introduced a new diagnostic method that provides rapid and accurate diagnosis of DCISM using multiphoton microscopy (MPM). Suspicious foci in H&E-stained images were labeled as regions of interest (ROIs), and the nuclei within these ROIs were segmented using a deep learning model. MPM was used to capture images of the ROIs in H&E-stained sections. The intensity of two-photon excitation fluorescence (TPEF) in the myoepithelium was significantly different from that in tumor parenchyma and tumor stroma. Through the use of MPM, the myoepithelium and basement membrane can be easily observed via TPEF and second-harmonic generation (SHG), respectively. By fusing the nuclei in H&E-stained images with MPM images, DCISM can be differentiated from suspicious small cancer clusters in DCIS. The proposed method demonstrated good consistency with the cytokeratin 5/6 (CK5/6) myoepithelial staining method (kappa coefficient = 0.818).


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Humanos , Femenino , Carcinoma Intraductal no Infiltrante/patología , Inmunohistoquímica , Microscopía , Neoplasias de la Mama/patología , Coloración y Etiquetado , Invasividad Neoplásica
3.
J Neuroinflammation ; 21(1): 73, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528529

RESUMEN

BACKGROUND: Guillain-Barré syndrome (GBS), a post-infectious, immune-mediated, acute demyelinating disease of the peripheral nerves and nerve roots, represents the most prevalent and severe acute paralyzing neuropathy. Purinergic P2X7 receptors (P2X7R) play a crucial role in central nervous system inflammation. However, little is known about their role in the immune-inflammatory response within the peripheral nervous system. METHODS: Initially, we assessed the expression of purinergic P2X7R in the peripheral blood of patients with GBS using flow cytometry and qRT-PCR. Next, we explored the expression of P2 X7R in CD4+ T cells, CD8+ T cells, and macrophages within the sciatic nerves and spleens of rats using immunofluorescence labeling and flow cytometry. The P2X7R antagonist brilliant blue G (BBG) was employed to examine its therapeutic impact on rats with experimental autoimmune neuritis (EAN) induced by immunization with the P0180 - 199 peptide. We analyzed CD4+ T cell differentiation in splenic mononuclear cells using flow cytometry, assessed Th17 cell differentiation in the sciatic nerve through immunofluorescence staining, and examined the expression of pro-inflammatory cytokine mRNA using RT-PCR. Additionally, we performed protein blotting to assess the expression of P2X7R and NLRP3-related inflammatory proteins within the sciatic nerve. Lastly, we utilized flow cytometry and immunofluorescence labeling to examine the expression of NLRP3 on CD4+ T cells in rats with EAN. RESULTS: P2X7R expression was elevated not only in the peripheral blood of patients with GBS but also in rats with EAN. In rats with EAN, inhibiting P2X7R with BBG alleviated neurological symptoms, reduced demyelination, decreased inflammatory cell infiltration of the peripheral nerves, and improved nerve conduction. BBG also limited the production of pro-inflammatory molecules, down-regulated the expression of P2X7R and NLRP3, and suppressed the differentiation of Th1 and Th17 cells, thus protecting against EAN. These effects collectively contribute to modifying the inflammatory environment and enhancing outcomes in EAN rats. CONCLUSIONS: Suppression of P2X7R relieved EAN manifestation by regulating CD4+ T cell differentiation and NLRP3 inflammasome activation. This finding underscores the potential significance of P2X7R as a target for anti-inflammatory treatments, advancing research and management of GBS.


Asunto(s)
Síndrome de Guillain-Barré , Neuritis Autoinmune Experimental , Antagonistas del Receptor Purinérgico P2X , Animales , Humanos , Ratas , Linfocitos T CD8-positivos , Diferenciación Celular/efectos de los fármacos , Síndrome de Guillain-Barré/tratamiento farmacológico , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Nervio Ciático/metabolismo , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Células TH1/efectos de los fármacos , Células TH1/metabolismo
4.
Small ; 20(30): e2311827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38381114

RESUMEN

The expeditious growth of wearable electronic devices has boomed the development of versatile smart textiles for personal health-related applications. In practice, integrated high-performance systems still face challenges of compromised breathability, high cost, and complicated manufacturing processes. Herein, a breathable fibrous membrane with dual-driven heating and electromagnetic interference (EMI) shielding performance is developed through a facile process of electrospinning followed by targeted conformal deposition. The approach constructs a robust hierarchically coaxial heterostructure consisting of elastic polymers as supportive "core" and dual-conductive components of polypyrrole and copper sulfide (CuS) nanosheets as continuous "sheath" at the fiber level. The CuS nanosheets with metal-like electrical conductivity demonstrate the promising potential to substitute the expensive conductive nano-materials with a complex fabricating process. The as-prepared fibrous membrane exhibits high electrical conductivity (70.38 S cm-1), exceptional active heating effects, including solar heating (saturation temperature of 69.7 °C at 1 sun) and Joule heating (75.2 °C at 2.9 V), and impressive EMI shielding performance (50.11 dB in the X-band), coupled with favorable air permeability (161.4 mm s-1 at 200 Pa) and efficient water vapor transmittance (118.9 g m-2 h). This work opens up a new avenue to fabricate versatile wearable devices for personal thermal management and health protection.

5.
BMC Cancer ; 24(1): 276, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424484

RESUMEN

BACKGROUND: Adenosine monophosphate-activated protein kinase (AMPK) is associated with the development of liver hepatocellular carcinoma (LIHC). AMPKα2, an α2 subunit of AMPK, is encoded by PRKAA2, and functions as the catalytic core of AMPK. However, the role of AMPKα2 in the LIHC tumor immune environment is unclear. METHODS: RNA-seq data were obtained from the Cancer Genome Atlas and Genotype-Tissue Expression databases. Using the single-cell RNA-sequencing dataset for LIHC obtained from the China National Genebank Database, the communication between malignant cells and T cells in response to different PRKAA2 expression patterns was evaluated. In addition, the association between PRKAA2 expression and T-cell evolution during tumor progression was explored using Pseudotime analysis, and the role of PRKAA2 in metabolic reprogramming was explored using the R "scMetabolis" package. Functional experiments were performed in LIHC HepG2 cells. RESULTS: AMPK subunits were expressed in tissue-specific and substrate-specific patterns. PRKAA2 was highly expressed in LIHC tissues and was associated with poor patient prognosis. Tumors with high PRKAA2 expression displayed an immune cold phenotype. High PRKAA2 expression significantly promoted LIHC immune escape. This result is supported by the following evidence: 1) the inhibition of major histocompatibility complex class I (MHC-I) expression through the regulation of interferon-gamma activity in malignant cells; 2) the promotion of CD8+ T-cell exhaustion and the formation of CD4+ Treg cells in T cells; 3) altered interactions between malignant cells and T cells in the tumor immune environment; and 4) induction of metabolic reprogramming in malignant cells. CONCLUSIONS: Our study indicate that PRKAA2 may contribute to LIHC progression by promoting metabolic reprogramming and tumor immune escape through theoretical analysis, which offers a theoretical foundation for developing PRKAA2-based strategies for personalized LIHC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteínas Quinasas Activadas por AMP , Carcinoma Hepatocelular/genética , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Neoplasias Hepáticas/genética , Agotamiento de Células T , Linfocitos T Reguladores , Escape del Tumor
6.
Nano Lett ; 23(15): 7014-7022, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37523782

RESUMEN

Increasing the cutoff voltage effectively maximizes the available capacity of the state-of-art layered-oxide cathodes (LiTMO2). However, the spontaneous dehydrogenation-oxidation of carbonates in the cathode inner Helmholtz plane (C-IHP) under high voltage/temperature leads to side effects, including weak cathode electrolyte interphase (CEI) and cathode structural collapse. Here, we report a specific adsorption-oxidation (Ad-O) mechanism that dominates the later CEI formation through molecular regulation in C-IHP. The two tailored additives with specific electron-rich groups will enter the C-IHP and mask the active sites of cathodes, thereby reducing the weak CEI generation from conventional carbonates. As-formed hierarchical CEI with inner LiF and outer B-F/-CN rich organic structure will further protect the aggressive cathode from harmful electrolyte corrosion under harsh conditions of high voltages (4.6 V) and elevated temperatures (60 °C). This synergistic strategy guided by the specific Ad-O mechanism enables 3.5 Ah LiNi0.8Co0.1Mn0.1O2/Graphite pouch cells, which remarkably achieve 270 Wh/kg with 450 cycles.

7.
Nano Lett ; 23(3): 1044-1051, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36655867

RESUMEN

Electrospun fibers have received wide attention in various fields ranging from the environment and healthcare to energy. However, nearly all electrospun fibers suffer from a pseudonanoscale diameter, resulting in fabricated membranes with a large pore size and limited separation performance. Herein, we report a novel strategy based on manipulating the equilibrium of stretch deformation and phase separation of electrospun jets to develop true-nanoscale fibers for effective selective separation. The obtained fibers present true-nanoscale diameters (∼67 nm), 1 order of magnitude less than those of common electrospun fibers, which endows the resultant membranes with remarkable nanostructural characteristics and separation performances in areas of protective textiles (waterproofness of 113 kPa and breathability of 4.1 kg m-2 d-1), air filtration (efficiency of 99.3% and pressure drop of 127.4 Pa), and water purification (flux of 81.5 kg m-2 h-1 and salt rejection of 99.94%). This work may shed light on developing high-performance separation materials for various applications.

8.
Nano Lett ; 23(22): 10579-10586, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37934045

RESUMEN

Two-dimensional (2D) nanomaterials have been widely applied as building blocks of nanoporous materials for high-precision separations. However, most existing 2D nanomaterials suffer from poor continuity and a lack of interior linking, resulting in deteriorated performance when assembled into macroscopic bulk structures. Here, a unique superspreading-based phase inversion technique is proposed to directly construct 2D nanofibrous networks (NFNs) from a polymer solution. By tailoring capillary behavior, polymer solution droplets evolve into ultrathin liquid films through superspreading; manipulating phase instability, subsequently, enables the liquid film to phase invert into continuous nanostructured networks. The assembled single-layered NFNs possess integrated structural superiorities of 1D nanoscale fiber diameter (∼40 nm) and 2D lateral infinity, exhibiting a weblike nanoarchitecture with extremely small through-pores (∼100 nm). Our NFNs show remarkable performances in air filtration (PM0.3 removal) and water purification (microfiltration level). This creation of such attractive 2D fibrous nanomaterials can pave the way for versatile high-performance separation applications.

9.
Nano Lett ; 23(23): 11337-11344, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37991483

RESUMEN

Smart membranes with protection and thermal-wet comfort are highly demanded in various fields. Nevertheless, the existing membranes suffer from a tradeoff dilemma of liquid resistance and moisture permeability, as well as poor thermoregulating ability. Herein, a novel strategy, based on the synchronous occurrence of humidity-induced electrospinning and electromeshing, is developed to synthesize a dual-network structured nanofiber/mesh for personal comfort management. Manipulating the ejection, deformation, and phase separation of spinning jets and charged droplets enables the creation of nanofibrous membranes composed of radiative cooling nanofibers and 2D nanostructured meshworks. With a combination of a true-nanoscale fiber (∼70 nm) in 2D meshworks, a small pore size (0.84 µm), and a superhydrophobic surface (151.9°), the smart membranes present high liquid repellency (95.6 kPa), improved breathability (4.05 kg m-2 d-1), and remarkable cooling performance (7.9 °C cooler than commercial cotton fabrics). This strategy opens up a pathway to the design of advanced smart textiles for personal protection.

10.
Lab Invest ; 103(10): 100223, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517702

RESUMEN

Nonalcoholic fatty liver disease is rapidly becoming one of the most common causes of chronic liver disease worldwide and is the leading cause of liver-related morbidity and mortality. A quantitative assessment of the degree of steatosis would be more advantageous for diagnostic evaluation and exploring the patterns of disease progression. Here, multiphoton microscopy, based on the second harmonic generation and 2-photon excited fluorescence, was used to label-free image the samples of nonalcoholic fatty liver. Imaging results confirm that multiphoton microscopy is capable of directly visualizing important pathologic features such as normal hepatocytes, hepatic steatosis, Mallory bodies, necrosis, inflammation, collagen deposition, microvessel, and so on and is a reliable auxiliary tool for the diagnosis of nonalcoholic fatty liver disease. Furthermore, we developed an image segmentation algorithm to simultaneously assess hepatic steatosis and fibrotic changes, and quantitative results reveal that there is a correlation between the degree of steatosis and collagen content. We also developed a feature extraction program to precisely display the spatial distribution of hepatocyte steatosis in tissues. These studies may be beneficial for a better clinical understanding of the process of steatosis as well as for exploring possible therapeutic targets.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/diagnóstico por imagen , Hígado/patología , Diagnóstico por Imagen/métodos , Procesamiento de Imagen Asistido por Computador , Colágeno , Microscopía de Fluorescencia por Excitación Multifotónica/métodos
11.
Cancer Sci ; 114(6): 2238-2253, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36853166

RESUMEN

Anterior gradient-2 (AGR2) is crucial to breast cancer progression. However, its role in the tumor immune microenvironment remains unclear. RNA sequencing expression profiles and associated clinical information were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. The AGR2 expression patterns were verified using clinical samples of breast cancer. Based on single-cell transcriptomic data, AGR2 expression patterns were identified and cell communication analysis was carried out. Furthermore, the roles of AGR2 in breast tumor progression were explored by a series of functional experiments. We found that DNA methylation was an important mechanism for regulating the expression patterns of AGR2. Patients with AGR2 low expression displayed an immune "hot" and immunosuppressive phenotype characterized by high abundance of tumor immune cell infiltration and increased enrichment scores for transforming growth factor-ß (TGF-ß) and epithelial-mesenchymal transition pathways, whereas patients with AGR2 high expression showed an opposite immunologic feature with a lack of immune cell infiltration, suggestive of an immune "cold" and desert phenotype. Moreover, single-cell analysis further revealed that AGR2 in malignant cells alters cell-cell interactions by coordinating cytokine-chemokine signaling and immune infiltration. Notably, two immunotherapy cohorts revealed that AGR2-coexpressed genes could serve as prognostic indicators of patient survival. In conclusion, AGR2 could promote breast cancer progression by affecting the tumor immune microenvironment. Patients with AGR2 low expression could be suitable for combination treatment with immune checkpoint inhibitor agents and TGF-ß blockers. Therefore, this study provides a theoretical foundation for developing a strategy for personalized immunotherapy to patients with breast cancer.


Asunto(s)
Neoplasias , Proteínas Oncogénicas , Proteínas Oncogénicas/genética , Mucoproteínas/genética , Citocinas , Comunicación Celular , Quimiocinas , Factor de Crecimiento Transformador beta/farmacología , Microambiente Tumoral
12.
Small ; 19(9): e2206375, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36549894

RESUMEN

Lithium-sulfur (Li-S) batteries are attractive candidates for next generation energy storage devices due to their high theoretical energy density of up to 2600 Wh kg-1 . However, the uneven deposition of lithium, the undesired shuttle of lithium polysulfides (LiPSs), and the excess weight fraction of electrolyte severely impair the practical energy density of Li-S batteries. Here, a low concentrated and nonpolar n-hexane (NH)-diluted electrolyte (named as LCDE) with ultralow-density to alleviate the above dilemmas is proposed. The nonpolar NH boosts the diffusion of lithium ion in LCDE, favoring the homogeneous deposition of lithium. This nonpolar effect also reduces the solubilities of LiPSs, promoting a quasi-solid-state transformation of sulfur chemistry, thus tremendously eradicating the shuttle of LiPSs. Most importantly, the ultra-light NH diluent enables the LCDE with an ultralow density of only 0.79 g mL-1 , which reduces the weight of LCDE by 32.5% compared with conventional ether-based electrolyte. Owing to all the merits, the Li-S pouch cell achieves a high energy density up to 417 Wh kg-1 . The nonpolar NH-diluted electrolyte with multifunction presented in this work provides a new and feasible direction to increase the practical energy density of Li-S batteries.

13.
Small ; 19(41): e2302835, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37312622

RESUMEN

Extremely low temperature has posed huge burden on the public safety concerns and global economics, thereby calling for high-performance warmth retention materials to resist harsh environment. However, most present fibrous warmth retention materials are limited by their large fiber diameter and simple stacking structure, leading to heavy weight, weak mechanical property, and limited thermal insulation performance. Herein, an ultralight and mechanically robust polystyrene/polyurethane fibrous aerogel by direct electrospinning for warmth retention is reported. Manipulation of charge density and phase separation of charged jet allows for the direct assembly of fibrous aerogels consisting of interweaved curly wrinkled micro/nanofibers. The resultant curly wrinkled micro/nanofibrous aerogel possesses low density of 6.8 mg cm-3 and nearly full recovery from 1500-cycle deformations, exhibiting both ultralight feature and superelastic property. The aerogel also shows low thermal conductivity of 24.5 mW m-1  K-1 , making synthetic warmth retention materials superior to down feather possible. This work may shed light on developing versatile 3D micro/nanofibrous materials for environmental, biological, and energy applications.

14.
Small ; 19(2): e2205067, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403221

RESUMEN

Waterproof and breathable membranes that prevent liquid water penetration, while allowing air and moisture transmission, have attracted significant attention for various applications. Electrospun nanofiber materials with adjustable pore structures, easily tunable wettability, and good pore connectivity, have shown significant potential for constructing waterproof and breathable membranes. Herein, a systematic overview of the recent progress in the design, fabrication, and application of waterproof and breathable nanofibrous membranes is provided. The various strategies for fabricating the membranes mainly including one-step electrospinning and post-treatment of nanofibers are given as a starting point for the discussion. The different design concepts and structural characteristics of each type of waterproof and breathable membrane are comprehensively analyzed. Then, some representative applications of the membranes are highlighted, involving personal protection, desalination, medical dressing, and electronics. Finally, the challenges and future perspectives associated with waterproof and breathable nanofibrous membranes are presented.


Asunto(s)
Membranas Artificiales , Nanofibras , Propiedades de Superficie , Vendajes , Nanofibras/química , Agua/química , Humectabilidad , Equipo de Protección Personal , Electrónica , Ensayo de Materiales
15.
Small ; 19(20): e2207797, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36808233

RESUMEN

Lithium-rich layered oxides (LLOs) are concerned as promising cathode materials for next-generation lithium-ion batteries due to their high reversible capacities (larger than 250 mA h g-1 ). However, LLOs suffer from critical drawbacks, such as irreversible oxygen release, structural degradation, and poor reaction kinetics, which hinder their commercialization. Herein, the local electronic structure is tuned to improve the capacity energy density retention and rate performance of LLOs via gradient Ta5+ doping. As a result, the capacity retention elevates from 73% to above 93%, and the energy density rises from 65% to above 87% for LLO with modification at 1 C after 200 cycles. Besides, the discharge capacity for the Ta5+ doped LLO at 5 C is 155 mA h g-1 , while it is only 122 mA h g-1 for bare LLO. Theoretical calculations reveal that Ta5+ doping can effectively increase oxygen vacancy formation energy, thus guaranteeing the structure stability during the electrochemical process, and the density of states results indicate that the electronic conductivity of the LLOs can be boosted significantly at the same time. This strategy of gradient doping provides a new avenue to improve the electrochemical performance of the LLOs by modulating the local structure at the surface.

16.
Small ; 19(34): e2301574, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093221

RESUMEN

The development of electric vehicles has received worldwide attention in the background of reducing carbon emissions, wherein lithium-ion batteries (LIBs) become the primary energy supply systems. However, commercial graphite-based anodes in LIBs currently confront significant difficulty in enduring ultrahigh power input due to the slow Li+ transport rate and the low intercalation potential. This will, in turn, cause dramatic capacity decay and lithium plating. The 2D layered materials (2DLMs) recently emerge as new fast-charging anodes and hold huge promise for resolving the problems owing to the synergistic effect of a lower Li+ diffusion barrier, a proper Li+ intercalation potential, and a higher theoretical specific capacity with using them. In this review, the background and fundamentals of fast-charging for LIBs are first introduced. Then the research progress recently made for 2DLMs used for fast-charging anodes are elaborated and discussed. Some emerging research directions in this field with a short outlook on future studies are further discussed.

17.
Small ; : e2306763, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095451

RESUMEN

All-solid-state batteries employing sulfide solid electrolyte and Li metal anode are promising because of their high safety and energy densities. However, the interface between Li metal and sulfides suffers from catastrophic instability which stems the practical use. Here, a dynamically stable sulfide electrolyte architecture to construct the hierarchy of interface stability is reported. By rationally designing the multilayer structures of sulfide electrolytes, the dynamic decomposing-alloying process from MS4 (M = Ge or Sn) unit in sulfide interlayer can significantly prohibit Li dendrite penetration is revealed. The abundance of highly electronic insulating decompositions, such as Li2 S, at the sulfide interlayer interface helps to well constrain the dynamic decomposition process and preserve the long-term polarization stability is also highlighted. By using Li6 PS5 Cl||Li10 SnP2 S12 ||Li6 PS5 Cl electrolyte architecture, Li metal anode shows an unprecedented critical current density over 3 mA cm-2 and achieves the steady over-potential for ≈900 hours. Based upon the merits, the Li||LiNi0.8 Co0.1 Mn0.1 O2 battery delivers a remarkable 75.3% retention even after 600 cycles at 1 C (1C-0.95 mA cm-2 ) under a low stack pressure of 15 MPa.

18.
BMC Cancer ; 23(1): 38, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627575

RESUMEN

BACKGROUND: Gastrointestinal stromal tumor (GIST) is currently regarded as a potentially malignant tumor, and early diagnosis is the best way to improve its prognosis. Therefore, it will be meaningful to develop a new method for auxiliary diagnosis of this disease. METHODS: Here we try out a new means to detect GIST by combining two-photon imaging with automatic image processing strategy. RESULTS: Experimental results show that two-photon microscopy has the ability to label-freely identify the structural characteristics of GIST such as tumor cells, desmoplastic reaction, which are entirely different from those from gastric adenocarcinoma. Moreover, an image processing approach is used to extract eight collagen morphological features from tumor microenvironment and normal muscularis, and statistical analysis demonstrates that there are significant differences in three features-fiber area, density and cross-link density. The three morphological characteristics may be considered as optical imaging biomarkers to differentiate between normal and abnormal tissues. CONCLUSION: With continued improvement and refinement of this technology, we believe that two-photon microscopy will be an efficient surveillance tool for GIST and lead to better management of this disease.


Asunto(s)
Tumores del Estroma Gastrointestinal , Neoplasias Gástricas , Humanos , Tumores del Estroma Gastrointestinal/diagnóstico por imagen , Tumores del Estroma Gastrointestinal/patología , Microscopía , Neoplasias Gástricas/patología , Pronóstico , Colágeno , Microambiente Tumoral
19.
Eur Radiol ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37857901

RESUMEN

OBJECTIVE: To investigate the association between chronic headache outcome and aneurysmal wall enhancement (AWE) on high-resolution vessel wall imaging (HR-VWI) in patients with unruptured intracranial aneurysms (UIAs) who underwent microsurgical clipping. METHODS: Two hundred seventy-four UIA patients were retrospectively analyzed. Patients were grouped according to presence of AWE. AWE was subclassified as focal or uniform. Clinical and imaging data were recorded. Headache was evaluated using the 10-point numerical rating scale and Headache Impact Test-6 before and 6 months after surgery. RESULTS: The proportions of patients reporting chronic headache in the no AWE, focal wall enhancement (FWE), and uniform wall enhancement (UWE) groups were 5.7%, 24.8%, and 41.8%, respectively. All patients in the UWE group who reported headache before surgery experienced headache improvement after surgery. Decrease in headache severity was greater in the UWE group than in the FWE group. Multivariate binary logistic regression showed that FWE (odds ratio (OR) 0.490; 95% confidence interval (CI), 0.262-0.917; p = 0.026) and small intraluminal thrombus (OR 0.336; 95% CI, 0.142-0.795; p = 0.013) were independent factors protective against preoperative headache. FWE (OR 0.377; 95% CI, 0.195-0.728; p = 0.004) and small intraluminal thrombus (OR 0.235; 95% CI, 0.088-0.630; p = 0.004) were independent predictors of no headache relief after surgery. CONCLUSIONS: AWE on HR-VWI is associated with relief of chronic headache after surgical clipping in patients with UIAs. Incidence of chronic headache was highest in patients exhibiting UWE. These patients also experienced the greatest improvement in headache after surgical clipping. CLINICAL RELEVANCE STATEMENT: This study revealed that high-resolution vessel wall imaging can demonstrate aneurysmal wall plaque and intraluminal thrombus, which may be prognostic imaging markers for chronic headache in patients with unruptured intracranial aneurysms. KEY POINTS: • Aneurysmal wall enhancement may be associated with chronic headache. • Incidence of chronic headache was highest in patients with aneurysms exhibiting uniform wall enhancement. • Patients with aneurysms exhibiting uniform wall enhancement experienced the greatest improvement in headache after clipping.

20.
Nano Lett ; 22(23): 9485-9492, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36469697

RESUMEN

Face masks, as effective measures for passive air pollution control, are of fundamental importance, especially with the outbreak of emerging infectious diseases. Most existing masks are dense or thick, resulting in a lack of thermal/humidity comfort level; despite being worn tightly, they show limited PM0.3/pathogen removal. Here, we use a facile strategy to create air-conditioned masks using heterogeneous nanofibrous networks, based on an electrospinning/netting technique. Manipulation of the phase separation and self-assembly of charged jet/droplets by control of humidity-induced double diffusion and Taylor cone instability allows for the generation of air-conditioned masks consisting of radiative cooling wrinkled nanofibers and 2D nanostructured networks. Our masks show desirable microenvironment with high-efficiency PM0.3 removal (>99.988%), low air resistance (0.07% of atmospheric pressure), and remarkable radiative cooling capacity (∼2.8 °C temperature and ∼10% humidity drop), making high-performance filtration and temperature/humidity management "always online". This work should make possible the development of high-performance, energy-saving, and scalable fiber textiles for various applications.


Asunto(s)
Máscaras , Nanofibras , Transición de Fase , Frío , Humedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA