Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(5): 1892-1912, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262703

RESUMEN

In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.


Asunto(s)
Endospermo , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Almidón , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Endospermo/metabolismo , Endospermo/genética , Almidón/metabolismo , Almidón/biosíntesis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Amilopectina/metabolismo , Mutación , Plantas Modificadas Genéticamente
2.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931811

RESUMEN

The maximum detection distance is usually the primary concern of magnetic anomaly detection (MAD). Intuition tells us that larger object size, stronger magnetization and finer measurement resolution guarantee a further detectable distance. However, the quantitative relationship between detection distance and the above determinants is seldom studied. In this work, unmanned aerial vehicle-based MAD field experiments are conducted on cargo vessels and NdFeB magnets as typical magnetic objects to give a set of visualized magnetic field flux density images. Isometric finite element models are established, calibrated and analyzed according to the experiment configuration. A maximum detectable distance map as a function of target size and measurement resolution is then obtained from parametric sweeping on an experimentally calibrated finite element analysis model. We find that the logarithm of detectable distance is positively proportional to the logarithm of object size while negatively proportional to the logarithm of resolution, within the ranges of 1 m~500 m and 1 pT~1 µT, respectively. A three-parameter empirical formula (namely distance-size-resolution logarithmic relationship) is firstly developed to determine the most economic sensor configuration for a given detection task, to estimate the maximum detection distance for a given magnetic sensor and object, or to evaluate minimum detectable object size at a given magnetic anomaly detection scenario.

3.
Mol Psychiatry ; 27(10): 4123-4135, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35444255

RESUMEN

The intricate processes of microbiota-gut-brain communication in modulating human cognition and emotion, especially in the context of mood disorders, have remained elusive. Here we performed faecal metagenomic, serum metabolomics and neuroimaging studies on a cohort of 109 unmedicated patients with depressed bipolar disorder (BD) patients and 40 healthy controls (HCs) to characterise the microbial-gut-brain axis in BD. Across over 12,000 measured metabolic features, we observed a large discrepancy (73.54%) in the serum metabolome between BD patients and HCs, spotting differentially abundant microbial-derived neuroactive metabolites including multiple B-vitamins, kynurenic acid, gamma-aminobutyric acid and short-chain fatty acids. These metabolites could be linked to the abundance of gut microbiota presented with corresponding biosynthetic potentials, including Akkermansia muciniphila, Citrobacter spp. (Citrobacter freundii and Citrobacter werkmanii), Phascolarctobacterium spp., Yersinia spp. (Yersinia frederiksenii and Yersinia aleksiciae), Enterobacter spp. (Enterobacter cloacae and Enterobacter kobei) and Flavobacterium spp. Based on functional neuroimaging, BD-related neuroactive microbes and metabolites were discovered as potential markers associated with BD-typical features of functional connectivity of brain networks, hinting at aberrant cognitive function, emotion regulation, and interoception. Our study combines gut microbiota and neuroactive metabolites with brain functional connectivity, thereby revealing potential signalling pathways from the microbiota to the gut and the brain, which may have a role in the pathophysiology of BD.


Asunto(s)
Trastorno Bipolar , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Trastorno Bipolar/metabolismo , Eje Cerebro-Intestino , Metaboloma , Encéfalo/metabolismo
4.
Nanotechnology ; 34(30)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37094562

RESUMEN

Lithium supply shortages have prompted the search for alternatives to widespread grid system applications. Potassium-ion batteries (PIBs) have emerged to promising candidates for this purpose. Nonetheless, the large radius of K+(1.38 Å) impedes the march of satisfactory cathode materials. Here, we used solid-phase synthesis to prepare a layered K0.37MnO2·0.25H2O (KMO) cathode, comprising alternately connected MnO6octahedra with a large interlayer spacing (0.71 nm) to accommodate the migration and transport of K+ions. The cathode material achieved initial specific capacities of 102.3 and 88.1 mA h g-1at current densities of 60 mA g-1and 1 A g-1, respectively. The storage mechanism of K+ions in PIBs was demonstratedex situusing x-ray diffraction, x-ray photoelectron spectroscopy, and Raman spectroscopy measurements. Overall, our proposed KMO was confirmed as an auspicious cathode material for potential use in PIBs.

5.
J Immunol ; 206(5): 1013-1026, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33462138

RESUMEN

There is currently no effective vaccine against leishmaniasis because of the lack of sufficient knowledge about the Ags that stimulate host-protective and long-lasting T cell-mediated immunity. We previously identified Leishmania phosphoenolpyruvate carboxykinase (PEPCK, a gluconeogenic enzyme) as an immunodominant Ag that is expressed by both the insect (promastigote) and mammalian (amastigote) stages of the parasite. In this study, we investigated the role of PEPCK in metabolism, virulence, and immunopathogenicity of Leishmania major We show that targeted loss of PEPCK results in impaired proliferation of L. major in axenic culture and bone marrow-derived macrophages. Furthermore, the deficiency of PEPCK results in highly attenuated pathology in vivo. BALB/c mice infected with PEPCK-deficient parasites failed to develop any cutaneous lesions despite harboring parasites at the cutaneous site of infection. This was associated with a dramatic reduction in the frequency of cytokine (IFN-γ, IL-4, and IL-10)-producing CD4+ T cells in spleens and lymph nodes draining the infection site. Cells from mice infected with PEPCK-deficient parasites also produced significantly low levels of these cytokines into the culture supernatant following in vitro restimulation with soluble Leishmania Ag. PEPCK-deficient parasites exhibited significantly greater extracellular acidification rate, increased proton leak, and decreased ATP-coupling efficiency and oxygen consumption rates in comparison with their wild-type and addback counterparts. Taken together, these results show that PEPCK is a critical metabolic enzyme for Leishmania, and its deletion results in altered metabolic activity and attenuation of virulence.


Asunto(s)
Leishmania major/metabolismo , Leishmania major/patogenicidad , Leishmaniasis Cutánea/parasitología , Fosfoenolpiruvato/metabolismo , Factores de Virulencia/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Citocinas/inmunología , Femenino , Inmunidad Celular/inmunología , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Fosfoenolpiruvato/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Factores de Virulencia/inmunología
6.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 8-15, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38158695

RESUMEN

We discussed the expression and biological functions of the SAPCD2X1 protein in the HCT116 CRC cell line by bioinformatics analysis and prediction, and biological function verification. Spatial conformation models of SAPCD2X1 and SAPCD2 were predicted using the threading method, ensemble method, and several other protein structure prediction approaches. The conformational similarity between SAPCD2X1 and SAPCD2 was studied, and their functions were predicted. The biological experiments showed that SAPCD2X1 and SAPCD2 were overexpressed in CRC cells. SAPCD2X1-specific antibodies were prepared. The expressions of SAPCD2X1 and SAPCD2 were localized in cells using the immunofluorescence assay. The SAPCD2 and SAPCD2X1 overexpression models were validated using Western Blot and RT-qPCR. We successfully predicted the structures of the SAPCD2X1 and SAPCD2 proteins, and visualized them using the VDM software. It was predicted that the tertiary structure of SAPCD2X1 changed significantly compared with SAPCD2. Alteration of the biological functions of SAPCD2X1 was also predicted due to the changes in the spatial conformation of the protein. Anti-SAPCD2X1 antibody and SAPCD2X1-EGFP and SAPCD2-EGFP recombinant plasmids were established. The overexpression of the two proteins was induced in HCT116 cells using the recombinant plasmids, and verified by RT-qPCR and Western Blot. Meanwhile, the anti-SAPCD2X1 antibody was proved to have a high specificity. The immunofluorescence assay showed that SAPCD2X1 and SAPCD2 are mainly expressed in the cytoplasm. SAPCD2X1 and SAPCD2 exhibited significantly different biological functions in HCT116 cells. SAPCD2 is a carcinogenic protein, while SAPCD2X1 does not affect the proliferation, invasion, and migration of human CRC HCT116 cells.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Proteínas Nucleares , Humanos , Carcinogénesis , Carcinógenos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , MicroARNs/metabolismo , Proteínas Nucleares/genética
7.
Hered Cancer Clin Pract ; 21(1): 18, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773168

RESUMEN

INTRODUCTION: We present a case of a male patient with neurofibromatosis type 1 diagnosed with pancreatic divisum and several gastrointestinal tumors. A 55-year-old man was admitted to the hospital with recurrent chronic pancreatitis, indicating a large mass in the ampulla. In addition, genetic testing revealed two unique germline mutations in the neurofibromin (NF1) gene, and their potential interaction in promoting cancer was further investigated. CONCLUSION: The first similar case was reported in 2020. The current case was distinct from other cases since an additional two NF1 mutations were found in the patient. In conjunction with prior case reports, our findings imply that genetic testing in patients diagnosed with neurofibromatosis type 1 could be helpful in the development of effective treatments.

8.
Sensors (Basel) ; 23(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37447711

RESUMEN

Magnetic current imaging is deemed an emerging powerful technique for visualizing electrical currents in electronic devices. However, the existing magnetic-field-based Fourier Transform back-evolution method is limited by its mono-function of imaging the magnitude of current density in devices under test, and subject to background noise distortion. Here, we developed a novel vectorial current density imaging method based on the detection of the magnetic field gradient generated by current carrying conductors. A closed form solution of current density inversion was analytically derived and numerically verified. Experiments were conducted by scanning tri-axial fluxgate sensor over different shapes of electrical wires. The results show that a current density resolution of 24.15 mA/mm2, probe-to-sample separation of 2 mm, and spatial resolution of 0.69 mm were achieved over a maximum scanning area of 300 mm × 300 mm. Such a method is verified to be capable of simultaneously imaging both magnitude and directions of current density, which is a promising technique for in situ noninvasive inspection for the power electronic and semiconductor industry.


Asunto(s)
Imagen por Resonancia Magnética , Magnetismo , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Campos Magnéticos , Análisis de Fourier
9.
J Environ Manage ; 342: 118303, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37276617

RESUMEN

This study investigates the indicative role of oxidation-reduction potential (ORP) and pH of hydrocarbon-contaminated soils on their shear characteristics, contributing to safer and more efficient ex-situ remediation and management processes. The presence of hydrocarbons alters the soil's shear strength by affecting the hydration shell thickness, fluid's dielectric properties, and ion/electron exchange, as well as the soil's electrochemical force, which in turn affects the ORP and pH. The relationship between hydrocarbon concentrations in contaminated soils (0.1-15%) and corresponding ORP/pH values could be fitted linearly with a good correlation coefficient r (0.978), highlighting the potential of ORP/pH as an indicator for pollutant occurrence. Furthermore, the relationships between ORP/pH and shear strength, as tested in our study and obtained after processing from relevant literature sources, exhibited a strong fit (r = 0.976-0.995). The Mohr-Coulomb criterion modified using the ORP/pH parameter was established, which could improve the fitting effect of these relationships (r = 0.988-0.996), verifying the reliability of the novel criterion and application feasibility of ORP/pH. In future research, this modified criterion can be employed to conveniently assess the shear strength of contaminated soil by considering the shear behaviour of virgin soil and the ORP/pH values of the contaminated soil.


Asunto(s)
Contaminantes del Suelo , Suelo , Suelo/química , Estudios de Factibilidad , Reproducibilidad de los Resultados , Hidrocarburos , Oxidación-Reducción , Contaminantes del Suelo/química
10.
Am J Hum Genet ; 105(6): 1102-1111, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31679651

RESUMEN

Recurrent miscarriage (RM) affects millions of couples globally, and half of them have no demonstrated etiology. Genome sequencing (GS) is an enhanced and novel cytogenetic tool to define the contribution of chromosomal abnormalities in human diseases. In this study we evaluated its utility in RM-affected couples. We performed low-pass GS retrospectively for 1,090 RM-affected couples, all of whom had routine chromosome analysis. A customized sequencing and interpretation pipeline was developed to identify chromosomal rearrangements and deletions/duplications with confirmation by fluorescence in situ hybridization, chromosomal microarray analysis, and PCR studies. Low-pass GS yielded results in 1,077 of 1,090 couples (98.8%) and detected 127 chromosomal abnormalities in 11.7% (126/1,077) of couples; both members of one couple were identified with inversions. Of the 126 couples, 39.7% (50/126) had received former diagnostic results by karyotyping characteristic of normal human male or female karyotypes. Low-pass GS revealed additional chromosomal abnormalities in 50 (4.0%) couples, including eight with balanced translocations and 42 inversions. Follow-up studies of these couples showed a higher miscarriage/fetal-anomaly rate of 5/10 (50%) compared to 21/93 (22.6%) in couples with normal GS, resulting in a relative risk of 2.2 (95% confidence interval, 1.1 to 4.6). In these couples, this protocol significantly increased the diagnostic yield of chromosomal abnormalities per couple (11.7%) in comparison to chromosome analysis (8.0%, chi-square test p = 0.000751). In summary, low-pass GS identified underlying chromosomal aberrations in 1 in 9 RM-affected couples, enabling identification of a subgroup of couples with increased risk of subsequent miscarriage who would benefit from a personalized intervention.


Asunto(s)
Aborto Habitual/diagnóstico , Aborto Habitual/genética , Aberraciones Cromosómicas , Secuenciación Completa del Genoma/métodos , Adulto , Femenino , Estudios de Seguimiento , Humanos , Cariotipificación , Masculino , Embarazo , Pronóstico , Estudios Retrospectivos
11.
Genome Res ; 29(5): 798-808, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30940689

RESUMEN

Here, we describe single-tube long fragment read (stLFR), a technology that enables sequencing of data from long DNA molecules using economical second-generation sequencing technology. It is based on adding the same barcode sequence to subfragments of the original long DNA molecule (DNA cobarcoding). To achieve this efficiently, stLFR uses the surface of microbeads to create millions of miniaturized barcoding reactions in a single tube. Using a combinatorial process, up to 3.6 billion unique barcode sequences were generated on beads, enabling practically nonredundant cobarcoding with 50 million barcodes per sample. Using stLFR, we demonstrate efficient unique cobarcoding of more than 8 million 20- to 300-kb genomic DNA fragments. Analysis of the human genome NA12878 with stLFR demonstrated high-quality variant calling and phase block lengths up to N50 34 Mb. We also demonstrate detection of complex structural variants and complete diploid de novo assembly of NA12878. These analyses were all performed using single stLFR libraries, and their construction did not significantly add to the time or cost of whole-genome sequencing (WGS) library preparation. stLFR represents an easily automatable solution that enables high-quality sequencing, phasing, SV detection, scaffolding, cost-effective diploid de novo genome assembly, and other long DNA sequencing applications.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma/métodos , Análisis Costo-Beneficio , Diploidia , Biblioteca de Genes , Genoma Humano , Genómica , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Secuenciación Completa del Genoma/economía
12.
Small ; 18(39): e2203525, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36026562

RESUMEN

Magnesium ion batteries (MIBs) have attracted much attention due to their low cost and high safety properties. However, the intense charge repulsion effect and sluggish diffusion dynamics of Mg2+ ions result in unsatisfactory electrochemical performance of conventional cathode materials in MIBs. This work reports water-lubricated aluminum vanadate (HAlVO) as high-performance cathode material for Mg2+ ions storage and investigates the capacity fade mechanism of water-free aluminum vanadate (AlVO). The charge density difference based on density functional theory calculation is performed to analyze the charge transfer process of water-lubricated/free aluminum vanadates (HAlVO/AlVO). The different charge transfer phenomena of two materials and the charge shielding effect of water molecule in HAlVO are revealed. Moreover, the single-phase structural evolution process and the Mg2+ ions storage mechanism of HAlVO are further investigated deeply by different in situ and ex situ characterization methods. This work proves that HAlVO is a potential candidate cathode material to satisfy the high-performance reversible Mg2+ ions storage, and the water-lubricated method is an effective strategy to improve the electrochemical performance of vanadium oxides cathode.

13.
Plant Biotechnol J ; 20(7): 1387-1401, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35560858

RESUMEN

Amylose content is a crucial physicochemical property responsible for the eating and cooking quality of rice (Oryza sativa L.) grain and is mainly controlled by the Waxy (Wx) gene. Previous studies have identified several Dull genes that modulate the expression of the Wxb allele in japonica rice by affecting the splicing efficiency of the Wxb pre-mRNA. Here, we uncover dual roles for a novel Dull gene in pre-mRNA splicing and microRNA processing. We isolated the dull mutant, du13, with a dull endosperm and low amylose content. Map-based cloning showed that Du13 encodes a C2 H2 zinc-finger protein. Du13 coordinates with the nuclear cap-binding complex to regulate the splicing of Wxb transcripts in rice endosperm. Moreover, Du13 also regulates alternative splicing of other protein-coding transcripts and affects the biogenesis of a subset of microRNAs. Our results reveal an evolutionarily conserved link between pre-mRNA splicing and microRNA biogenesis in rice endosperm. Our findings also provide new insights into the functions of Dull genes in rice and expand our knowledge of microRNA biogenesis in monocots.


Asunto(s)
MicroARNs , Oryza , Almidón Sintasa , Amilosa/metabolismo , Endospermo/genética , Endospermo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Almidón Sintasa/genética , Ceras/metabolismo , Zinc/metabolismo
14.
Plant Biotechnol J ; 20(3): 437-453, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34655511

RESUMEN

Starch accounts for over 80% of the total dry weight in cereal endosperm and determines the kernel texture and nutritional quality. Amyloplasts, terminally differentiated plastids, are responsible for starch biosynthesis and storage. We screened a series of rice mutants with floury endosperm to clarify the mechanism underlying amyloplast development and starch synthesis. We identified the floury endosperm19 (flo19) mutant which shows opaque of the interior endosperm. Abnormal compound starch grains (SGs) were present in the endosperm cells of the mutant. Molecular cloning revealed that the FLO19 allele encodes a plastid-localized pyruvate dehydrogenase complex E1 component subunit α1 (ptPDC-E1-α1) that is expressed in all rice tissues. In vivo enzyme assays demonstrated that the flo19 mutant showed decreased activity of the plastidic pyruvate dehydrogenase complex. In addition, the amounts of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were much lower in the developing flo19 mutant endosperm, suggesting that FLO19 participates in fatty acid supply for galactolipid biosynthesis in amyloplasts. FLO19 overexpression significantly increased seed size and weight, but did not affect other important agronomic traits, such as panicle length, tiller number and seed setting rate. An analysis of single nucleotide polymorphism data from a panel of rice accessions identified that the pFLO19L haplotype was positively associated with grain length, implying a potential application in rice breeding. In summary, our study demonstrates that FLO19 is involved in galactolipid biosynthesis which is essential for amyloplast development and starch biosynthesis in rice.


Asunto(s)
Oryza , Grano Comestible , Endospermo/metabolismo , Galactolípidos , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Complejo Piruvato Deshidrogenasa , Almidón/metabolismo
15.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362297

RESUMEN

Subcellular mRNA localization is an evolutionarily conserved mechanism to spatially and temporally drive local translation and, in turn, protein targeting. Hence, this mechanism achieves precise control of gene expression and establishes functional and structural networks during cell growth and development as well as during stimuli response. Since its discovery in ascidian eggs, mRNA localization has been extensively studied in animal and yeast cells. Although our knowledge of subcellular mRNA localization in plant cells lags considerably behind other biological systems, mRNA localization to the endoplasmic reticulum (ER) has also been well established since its discovery in cereal endosperm cells in the early 1990s. Storage protein mRNA targeting to distinct subdomains of the ER determines efficient accumulation of the corresponding proteins in different endosomal storage sites and, in turn, underlies storage organelle biogenesis in cereal grains. The targeting process requires the presence of RNA localization elements, also called zipcodes, and specific RNA-binding proteins that recognize and bind these zipcodes and recruit other factors to mediate active transport. Here, we review the current knowledge of the mechanisms and functions of mRNA localization to the ER in plant cells and address directions for future research.


Asunto(s)
Endospermo , Células Vegetales , Animales , Endospermo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Vegetales/metabolismo , Retículo Endoplásmico/metabolismo , Transporte de Proteínas , Grano Comestible/metabolismo
16.
Circulation ; 142(13): 1261-1278, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32686471

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments of AF are suboptimal because they are not targeted to the molecular mechanisms underlying AF. Using a highly novel gene therapy approach in a canine, rapid atrial pacing model of AF, we demonstrate that NADPH oxidase 2 (NOX2) generated oxidative injury causes upregulation of a constitutively active form of acetylcholine-dependent K+ current (IKACh), called IKH; this is an important mechanism underlying not only the genesis, but also the perpetuation of electric remodeling in the intact, fibrillating atrium. METHODS: To understand the mechanism by which oxidative injury promotes the genesis and maintenance of AF, we performed targeted injection of NOX2 short hairpin RNA (followed by electroporation to facilitate gene delivery) in atria of healthy dogs followed by rapid atrial pacing. We used in vivo high-density electric mapping, isolation of atrial myocytes, whole-cell patch clamping, in vitro tachypacing of atrial myocytes, lucigenin chemiluminescence assay, immunoblotting, real-time polymerase chain reaction, immunohistochemistry, and Masson trichrome staining. RESULTS: First, we demonstrate that generation of oxidative injury in atrial myocytes is a frequency-dependent process, with rapid pacing in canine atrial myocytes inducing oxidative injury through the induction of NOX2 and the generation of mitochondrial reactive oxygen species. We show that oxidative injury likely contributes to electric remodeling in AF by upregulating IKACh by a mechanism involving frequency-dependent activation of PKCε (protein kinase C epsilon). The time to onset of nonsustained AF increased by >5-fold in NOX2 short hairpin RNA-treated dogs. Furthermore, animals treated with NOX2 short hairpin RNA did not develop sustained AF for up to 12 weeks. The electrophysiological mechanism underlying AF prevention was prolongation of atrial effective refractory periods, at least in part attributable to the attenuation of IKACh. Attenuated membrane translocation of PKCε appeared to be a likely molecular mechanism underlying this beneficial electrophysiological remodeling. CONCLUSIONS: NOX2 oxidative injury (1) underlies the onset, and the maintenance of electric remodeling in AF, as well, and (2) can be successfully prevented with a novel, gene-based approach. Future optimization of this approach may lead to a novel, mechanism-guided therapy for AF.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Regulación Enzimológica de la Expresión Génica , Terapia Genética , NADPH Oxidasa 2 , ARN Interferente Pequeño , Animales , Fibrilación Atrial/enzimología , Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/terapia , Perros , Atrios Cardíacos/enzimología , Atrios Cardíacos/fisiopatología , NADPH Oxidasa 2/biosíntesis , NADPH Oxidasa 2/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
17.
Nanotechnology ; 32(31)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33906187

RESUMEN

Rechargeable aqueous zinc-ion batteries (AZIBs) have garnered widespread attention as a new large-scale energy storage candidate owing to their low cost and high theoretical capacity. Because of the unique divalent state of Zn2+and the existence of a strong electrostatic repulsion phenomenon, researchers are currently focusing on how to prepare high-performance cathode materials. In this study, we synthesized aluminum vanadate (AlV3O9) as a cathode material for AZIBs using a solvothermal method. Al3+acted as a pillar in the resultant structure and stabilized it. Furthermore, this large interlayer spacing enhanced the ion diffusion coefficient and accelerated the ion transport process. Because of these advantages, the AlV3O9(AVO) cathode exhibited excellent electrochemical performance, including a high capacity of 421.0 mA h g-1at 0.1 A g-1and a stable rate capability of 348.2 mA h g-1at 1 A g-1. Moreover, it exhibited a specific capacity of 202 mA h g-1even at a high current density of 3 A g-1(the capacity retention rate reached 84.38% after 1600 cycles). The prepared ZIBs presented a high power density of 366.6 W kg-1at an energy density of 286 W h kg-1. These extraordinary results indicate the great application potential of AVO as a cathode material for AZIBs.

18.
Neural Plast ; 2021: 3965385, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33552154

RESUMEN

Mental fatigue is a common psychobiological state elected by prolonged cognitive activities. Although, the performance and the disadvantage of the mental fatigue have been well known, its connectivity among the multiareas of the brain has not been thoroughly studied yet. This is important for the clarification of the mental fatigue mechanism. However, the common method of connectivity analysis based on EEG cannot get rid of the interference from strong noise. In this paper, an adaptive feature extraction model based on stacked denoising autoencoder has been proposed. The signal to noise ratio of the extracted feature has been analyzed. Compared with principal component analysis, the proposed method can significantly improve the signal to noise ratio and suppress the noise interference. The proposed method has been applied on the analysis of mental fatigue connectivity. The causal connectivity among the frontal, motor, parietal, and visual areas under the awake, fatigue, and sleep deprivation conditions has been analyzed, and different patterns of connectivity between conditions have been revealed. The connectivity direction under awake condition and sleep deprivation condition is opposite. Moreover, there is a complex and bidirectional connectivity relationship, from the anterior areas to the posterior areas and from the posterior areas to the anterior areas, under fatigue condition. These results imply that there are different brain patterns on the three conditions. This study provides an effective method for EEG analysis. It may be favorable to disclose the underlying mechanism of mental fatigue by connectivity analysis.


Asunto(s)
Encéfalo/fisiopatología , Electroencefalografía/métodos , Fatiga Mental/fisiopatología , Red Nerviosa/fisiopatología , Adulto , Femenino , Humanos , Masculino , Relación Señal-Ruido , Privación de Sueño/fisiopatología , Adulto Joven
19.
J Biol Chem ; 294(3): 1059-1069, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30459233

RESUMEN

FoxO proteins are major targets of insulin action, and FoxO1 mediates the effects of insulin on hepatic glucose metabolism. We reported previously that serpinB1 is a liver-secreted factor (hepatokine) that promotes adaptive ß-cell proliferation in response to insulin resistance in the liver-specific insulin receptor knockout (LIRKO) mouse. Here we report that FoxO1 plays a critical role in promoting serpinB1 expression in hepatic insulin resistance in a non-cell-autonomous manner. Mice lacking both the insulin receptor and FoxO1 (LIRFKO) exhibit reduced ß-cell mass compared with LIRKO mice because of attenuation of ß-cell proliferation. Although hepatic expression of serpinB1 mRNA and protein levels was increased in LIRKO mice, both the mRNA and protein levels returned to control levels in LIRFKO mice. Furthermore, liver-specific expression of constitutively active FoxO1 in transgenic mice induced an increase in hepatic serpinB1 mRNA and protein levels in refed mice. Conversely, serpinB1 mRNA and protein levels were reduced in mice lacking FoxO proteins in the liver. ChIP studies demonstrated that FoxO1 binds to three distinct sites located ∼9 kb upstream of the serpinb1 gene in primary mouse hepatocytes and that this binding is enhanced in hepatocytes from LIRKO mice. However, adenoviral expression of WT or constitutively active FoxO1 and insulin treatment are sufficient to regulate other FoxO1 target genes (IGFBP-1 and PEPCK) but not serpinB1 expression in mouse primary hepatocytes. These results indicate that liver FoxO1 promotes serpinB1 expression in hepatic insulin resistance and that non-cell-autonomous factors contribute to FoxO1-dependent effects on serpinB1 expression in the liver.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hígado/metabolismo , Serpinas/biosíntesis , Animales , Proteína Forkhead Box O1/genética , Hepatocitos/citología , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Hígado/citología , Masculino , Ratones , Ratones Transgénicos , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Serpinas/genética
20.
Asian-Australas J Anim Sci ; 33(5): 802-811, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31208170

RESUMEN

OBJECTIVE: Two experiments were conducted to investigate the effects of dietary sucralose on diet preference and growth performance of weaned piglets, and a third experiment was a 28-d safety study to examine if high-dose sucralose could affect the health state of weaned piglets. METHODS: In experiment one, 48 piglets had free access to a corn-soybean based diet and the same diet supplemented with 150 mg/kg sucralose for 15 d. In experiment two, 180 piglets were blocked into 5 treatments with 6 replications. They were fed basal diets supplemented with 0, 75, 150, 225, and 300 mg/kg sucralose for 28 days. In experiment three, 108 piglets were randomly assigned to 3 treatments and fed diets supplemented with 0, 150 (suitable level), and 1,500 (ten-fold suitable level) mg/kg sucralose for 28 d. RESULTS: The experiment 1 showed that piglets preferred (p < 0.05) diets containing sucralose during experimental period. In experiment 2, piglets fed a diet supplemented with 150 mg/kg sucralose had a higher average daily gain (ADG) and average daily feed intake (ADFI) than pigs in the control group and other treatment groups during the experiment period. The concentrations of sucralose over 150 mg/kg may decrease feed intake. However, no difference in feed conversion ratio was observed. In experiment 3, piglets fed diet supplemented with 150 mg/kg sucralose had a higher average daily gain (ADG) and average daily feed intake (ADFI) than that of pigs in the control group and 1500 mg/kg treatment groups during the experiment period. Clinical blood metabolites, organ index and histological morphology were not significantly different between sucralose treatments. CONCLUSION: Sucralose can promote feed intake and thereby improve growth performance of weaned piglets. Moreover, inclusion of 1,500 mg/kg sucralose was demonstrated to have no observed adverse effects. Supplementing 150 mg/kg sucralose for weaned piglets is recommended in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA