Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420756

RESUMEN

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Asunto(s)
Catepsina D , Diabetes Mellitus Tipo 2 , Monocitos , Animales , Humanos , Ratones , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Precursores Enzimáticos , Ratones Transgénicos , Monocitos/metabolismo , Transcitosis/fisiología
2.
Anal Chem ; 96(26): 10800-10808, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904228

RESUMEN

Tumor-derived extracellular vesicles (TEVs) are rich in cellular information and hold great promise as a biomarker for noninvasive cancer diagnosis. However, accurate measurement of TEVs presents challenges due to their low abundance and potential interference from a high number of EVs derived from normal cells. Herein, an aptamer-proximity-ligation-activated rolling circle amplification (RCA) method for EV membrane recognition, coupled with single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the quantification of TEVs, is developed. When DNA-labeled ultrasmall gold nanoparticle (AuNP) probes bind to the long chains formed by RCA, they aggregate to form large particles. Notably, small AuNPs scarcely produce pulse signals in sp-ICP-MS, thereby detecting TEVs in a wash-free manner. By leveraging the strong binding affinity of aptamers, dual aptamers for EpCAM and PD-L1 recognition, and the sp-ICP-MS technique, this method offers remarkable sensitivity and selectivity in tracing TEVs. Under optimized conditions, the present method shows a favorable linear relationship between the pulse signal frequency of sp-ICP-MS and TEV concentration within the range of 105-107 particles/mL, along with a detection limit of 1.1 × 104 particles/mL. The pulse signals from sp-ICP-MS combined with machine learning algorithms are used to discriminate cancer patients from healthy donors with 100% accuracy. Due to its simple and fast operation and excellent sensitivity and accuracy, this approach holds significant potential for diverse applications in life sciences and personalized medicine.


Asunto(s)
Aptámeros de Nucleótidos , Vesículas Extracelulares , Oro , Espectrometría de Masas , Nanopartículas del Metal , Técnicas de Amplificación de Ácido Nucleico , Humanos , Aptámeros de Nucleótidos/química , Vesículas Extracelulares/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Nanopartículas del Metal/química , Oro/química , Espectrometría de Masas/métodos , Neoplasias , Molécula de Adhesión Celular Epitelial/metabolismo , Límite de Detección
3.
Mikrochim Acta ; 191(2): 113, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286863

RESUMEN

Semiconductor materials have become a competitive candidate for surface-enhanced Raman scattering (SERS) substrate. However, powdered semiconductors are difficult to execute a fast in situ detection for trace analytes. Here, we developed a new flexible semiconductor SERS substrate by in situ densely growing anatase TiO2 nanoparticles on the surface of cotton fabric through a filtration-hydrothermal method, in which TiO2 exhibits excellent controllability in size and distribution by regulating the ratio of water to alcohol in synthesis and the number of filtration-hydrothermal repetitive cycle. Cotton fabric/TiO2 (Cot/TiO2) substrate exhibits a high SERS activity and excellent spectral repeatability. The developed substrate has an ultra-high stability that can withstand long-term preservation; it can even resist the corrosions of strong acid and alkali, as well as high temperature up to 100 °C and low temperature down to - 20 °C. The flexible substrate can be used to carry out a rapid in situ detection for quinolone antibiotic (enrofloxacin and enoxacin) residues on the fish body surface by using a simple swabbing method, with high quantitative detection potential (up to an order of magnitude of 10-7 M), and even for the simultaneous detection of both drug residues. The flexible substrate also exhibits an excellent recyclability up to 6 recycles in the actual SERS detection.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Animales , Plata/química , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Semiconductores
4.
Carcinogenesis ; 44(3): 197-208, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-36882165

RESUMEN

AT-Rich Interaction Domain 1A (ARID1A) is an important SWItch/Sucrose Non-Fermentation (SWI/SNF) chromatin remodeling complex subunit, and its coding gene has a high mutation frequency in many cancers. Current studies have reported that ARID1A mutational status is correlated to cancer development, including cell proliferation, invasiveness, metastasis, and morphological alterations. ARID1A acts as a tumor suppressor, regulating gene transcription, participating in DNA damage response, and influencing tumor immune microenvironment and signaling pathways. The absence of ARID1A in cancer can lead to widespread dysregulation of gene expression in cancer initiation, promotion, and progression. For patients with ARID1A mutations, effective individualized treatment can improve the prognosis of patients. In this review, we aim to discuss the mechanism of ARID1A mutations in cancer development and explore the significance of discoveries for treatment.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias , Humanos , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patología , Mutación , Microambiente Tumoral/genética
5.
Anal Chem ; 95(20): 8113-8120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37162406

RESUMEN

Identification of a drug mechanism is vital for drug development. However, it often resorts to the expensive and cumbersome omics methods along with complex data analysis. Herein, we developed a methodology to analyze organelle staining images of single cells using a deep learning algorithm (TL-ResNet50) for rapid and accurate identification of different drug mechanisms. Based on the organelle-related cell morphological changes caused by drug action, the constructed deep learning model can fast predict the drug mechanism with a high accuracy of 92%. Further analysis reveals that drug combination at different ratios can enhance a certain mechanism or generate a new mechanism. This work would highly facilitate clinical medication and drug screening.


Asunto(s)
Aprendizaje Profundo , Fluorescencia , Algoritmos , Fenotipo
6.
Neurol Sci ; 44(10): 3557-3566, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37204564

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. An increasing number of researchers have found extra motor features in ALS, which are also called ALS-plus syndromes. Besides, a great majority of ALS patients also have cognitive impairment. However, clinical surveys of the frequency and genetic background of ALS-plus syndromes are rare, especially in China. METHODS: We investigated a large cohort of 1015 patients with ALS, classifying them into six groups according to different extramotor symptoms and documenting their clinical manifestations. Meanwhile, based on their cognitive function, we divided these patients into two groups and compared demographic characteristics. Genetic screening for rare damage variants (RDVs) was also performed on 847 patients. RESULTS: As a result, 16.75% of patients were identified with ALS-plus syndrome, and 49.5% of patients suffered cognitive impairment. ALS-plus group had lower ALSFRS-R scores, longer diagnostic delay time, and longer survival times, compared to ALS pure group. RDVs occurred less frequently in ALS-plus patients than in ALS-pure patients (P = 0.042) but showed no difference between ALS-cognitive impairment patients and ALS-cognitive normal patients. Besides, ALS-cognitive impairment group tends to harbour more ALS-plus symptoms than ALS-cognitive normal group (P = 0.001). CONCLUSION: In summary, ALS-plus patients in China are not rare and show multiple differences from ALS-pure patients in clinical and genetic features. Besides, ALS-cognitive impairment group tends to harbour more ALS-plus syndrome than ALS-cognitive normal group. Our observations correspond with the theory that ALS involves several diseases with different mechanisms and provide clinical validation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Trastornos del Conocimiento , Disfunción Cognitiva , Humanos , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/diagnóstico , Síndrome , Diagnóstico Tardío , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/genética , Trastornos del Conocimiento/diagnóstico
7.
Sensors (Basel) ; 23(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37430737

RESUMEN

To allieviate the heavy traffic burden over backhaul links and improve the user's quality of service (QoS), edge caching plays an important role in wireless networks. This paper investigated the optimal designs of content placement and transmission in wireless caching networks. The contents to be cached and requested were encoded into individual layers by scalable video coding (SVC), and different sets of layers can provide different viewing qualities to end users. The demanded contents were provided by helpers caching the requested layers, or by the macro-cell base station (MBS) otherwise. In the content placement phase, this work formulated and solved the delay minimization problem. In the content transmission phase, the sum rate optimization problem was established. To effectively solve the nonconvex problem, the methods of semi-definite relaxation (SDR), successive convex approximation (SCA), and arithmetic-geometric mean (AGM) inequality were adopted, after which the original problem was transformed into the convex form. The numerical results show that the transmission delay is reduced by caching contents at helpers. Moreover, the fast convergence of the proposed algorithm for solving the sum rate maximization problem is presented, and the sum rate gain of edge caching is also revealed, as compared to the benchmark scheme without content caching.

8.
Sensors (Basel) ; 23(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38067720

RESUMEN

Circuits on different layers in a printed circuit board (PCB) must be aligned according to high-precision fiducial mark images during exposure processing. However, processing quality depends on the detection accuracy of fiducial marks. Precise segmentation of fiducial marks from images can significantly improve detection accuracy. Due to the complex background of PCB images, there are significant challenges in the segmentation and detection of fiducial mark images. In this paper, the mARU-Net is proposed for the image segmentation of fiducial marks with complex backgrounds to improve detection accuracy. Compared with some typical segmentation methods in customized datasets of fiducial marks, the mARU-Net demonstrates good segmentation accuracy. Experimental research shows that, compared with the original U-Net, the segmentation accuracy of the mARU-Net is improved by 3.015%, while the number of parameters and training times are not increased significantly. Furthermore, the centroid method is used to detect circles in segmentation results, and the deviation is kept within 30 microns, with higher detection efficiency. The detection accuracy of fiducial mark images meets the accuracy requirements of PCB production.

9.
J Cell Physiol ; 237(4): 2258-2270, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35147979

RESUMEN

Immune regulation of osteochondral defect regeneration has not yet been rigorously characterized. Although macrophages have been demonstrated to regulate the regeneration process in various tissues, their direct contribution to cartilage regeneration remains to be investigated, particularly the functions of polarized macrophage subpopulations. In this study, we investigated the origins and functions of macrophages during healing of osteochondral injury in the murine model. Upon osteochondral injury, joint macrophages are predominantly derived from circulating monocytes. Macrophages are essential for spontaneous cartilage regeneration in juvenile C57BL/6 mice, by modulating proliferation and apoptosis around the injury site. Exogeneous macrophages also exhibit therapeutic potential in promoting cartilage regeneration in adult mice with poor regenerative capacity, possibly via regulation of PDGFRα+  stem cells, with this process being influenced by initial phenotype and administration timing. Only M2c macrophages are able to promote regeneration of both cartilage tissues and subchondral bone. Overall, we reveal the direct link between macrophages and osteochondral regeneration and highlight the key roles of relevant immunological niches in successful regeneration.


Asunto(s)
Cartílago Articular , Macrófagos/fisiología , Cicatrización de Heridas , Animales , Cartílago Articular/citología , Cartílago Articular/lesiones , Cartílago Articular/fisiología , Ratones , Ratones Endogámicos C57BL
10.
Anal Chem ; 94(46): 16196-16203, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36358017

RESUMEN

Quantification of exosomal multi-miRNA can reveal the initiation, progression, and metastasis of tumors, which is conducive to the noninvasive early diagnosis of cancer. However, low-sensitivity and single-plex detection characteristics of traditional methods seriously hinder the accuracy and specificity of exosomal miRNAs in cancer diagnosis. Herein, we design an ultramultiplexing strategy that enables simultaneous and sensitive detection of multiple exosomal miRNAs by nanosatellites (magnetic beads (MBs) @ NaLnF4) and catalytic hairpin assembly (CHA) amplification in combination with inductively coupled plasma-mass spectrometry (ICP-MS) to diagnose cancer accurately. The competitive binding of target exosomal miRNAs with the recognition sequences on nanosatellites triggers the drop of NaLnF4 from MBs, followed by a CHA reaction that releases more NaLnF4 labels for ICP-MS detection. This method is used to detect ten types of miRNAs simultaneously with a detection limit of 0.01 fM, which is one order of magnitude lower than the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. Linear discriminant analysis as a machine learning algorithm is subsequently applied to analyze the signals of exosomal multi-miRNA, and the discrimination accuracy of ten cell exosomes reaches 98.6%. In a clinical cohort of 42 patients, including five cancer types and healthy controls, exosomal multi-miRNA analysis achieves accurate cancer diagnosis and classification with 100% accuracy. Our results show that the combination of nanosatellites, CHA, and ICP-MS provides a universal biosensing platform for simultaneous and ultrasensitive detection of multiple targets.


Asunto(s)
Técnicas Biosensibles , Exosomas , MicroARNs , Neoplasias , Humanos , MicroARNs/análisis , Exosomas/química , Neoplasias/diagnóstico , Técnicas Biosensibles/métodos
11.
Nat Mater ; 20(6): 812-817, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33589800

RESUMEN

The notion of higher-order topological insulators has endowed materials with topological states beyond the first order. Particularly, a three-dimensional (3D) higher-order topological insulator can host topologically protected 1D hinge states, referred to as the second-order topological insulator, or 0D corner states, referred to as the third-order topological insulator. Similarly, a 3D higher-order topological semimetal can be envisaged if it hosts states on the 1D hinges. Here we report the realization of a second-order topological Weyl semimetal in a 3D-printed acoustic crystal, which possesses Weyl points in 3D momentum space, 2D Fermi arc states on surfaces and 1D gapless states on hinges. Like the arc surface states, the hinge states also connect the projections of the Weyl points. Our experimental results evidence the existence of the higher-order topological semimetal, which may pave the way towards innovative acoustic devices.

12.
FASEB J ; 35(2): e21287, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33423335

RESUMEN

Regulation of sphingolipid metabolism plays a role in cellular homeostasis, and dysregulation of these pathways is involved in cancer progression. Previously, our reports identified ceramide as an anti-metastatic lipid. In the present study, we investigated the biochemical alterations in ceramide-centered metabolism of sphingolipids that were associated with metastatic potential. We established metastasis-prone sublines of SKOV3 ovarian cancer cells using an in vivo selection method. These cells showed decreases in ceramide levels and ceramide synthase (CerS) 2 expression. Moreover, CerS2 downregulation in ovarian cancer cells promoted metastasis in vivo and potentiated cell motility and invasiveness. Moreover, CerS2 knock-in suppressed the formation of lamellipodia required for cell motility in this cell line. In order to define specific roles of ceramide species in cell motility controlled by CerS2, the effect of exogenous long- and very long-chain ceramide species on the formation of lamellipodia was evaluated. Treatment with distinct ceramides increased cellular ceramides and had inhibitory effects on the formation of lamellipodia. Interestingly, blocking the recycling pathway of ceramides by a CerS inhibitor was ineffective in the suppression of exogenous C24:1 -ceramide for the formation of lamellipodia. These results suggested that C24:1 -ceramide, a CerS2 metabolite, predominantly suppresses the formation of lamellipodia without the requirement for deacylation/reacylation. Moreover, knockdown of neutral ceramidase suppressed the formation of lamellipodia concomitant with upregulation of C24:1 -ceramide. Collectively, the CerS2-C24:1 -ceramide axis, which may be countered by neutral ceramidase, is suggested to limit cell motility and metastatic potential. These findings may provide insights that lead to further development of ceramide-based therapy and biomarkers for metastatic ovarian cancer.


Asunto(s)
Movimiento Celular , Ceramidas/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Ováricas/metabolismo , Seudópodos/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Ceramidas/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Neoplasias Ováricas/patología , Seudópodos/efectos de los fármacos , Esfingosina N-Aciltransferasa/antagonistas & inhibidores , Esfingosina N-Aciltransferasa/genética , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética
13.
Environ Res ; 207: 112147, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34606841

RESUMEN

As a platform for enzyme immobilization, metal-organic frameworks (MOFs) can protect enzyme activity from the interference of external adverse environment. Although these strategies have been proven to produce good results, little consideration has been given to the functional similarity of MOFs to the encapsulated enzyme. Here, catalase (CAT) was encapsulated in Fe-BTC with peroxidase-like activity to obtain a stable composite (CAT@Fe-BTC) with synergistic catalytic activity. Depending on the superior selectivity and high catalytic activity of CAT@Fe-BTC, colorimetric sensing for the detection of hydrogen peroxide and phenol was developed. This work demonstrates that the integration of functional MOFs with natural enzyme can be well applied to the construction of efficient catalysts.


Asunto(s)
Estructuras Metalorgánicas , Catalasa , Catálisis , Colorimetría , Peróxido de Hidrógeno
14.
Anal Chem ; 93(25): 9002-9010, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34143614

RESUMEN

Tumor exosomes with molecular marker-proteins inherited from their parent cells have emerged as a promising liquid biopsy biomarker for cancer diagnosis. However, facile, robust, and sensitive detection of exosomal proteins remains challenging. Therefore, a nanozyme sensor array is constructed by using aptamer-modified C3N4 nanosheets (Apt/C3N4 NSs) together with a solvent-mediated signal amplification strategy for ratiometric fluorescence detection of exosomal proteins. Three aptamers specific to exosomal proteins are selected to construct Apt/C3N4 NSs for high specific recognition of exosomal proteins. The adsorption of aptamers enhances the catalytic activity of C3N4 NSs as a nanozyme for oxidation of o-phenylenediamine (oPD) to 2,3-diaminophenazine (DAP). In the presence of target exosomes, the strong affinity between aptamer and exosome leads to the disintegration of Apt/C3N4 NSs, resulting in a decrease of catalytic activity, thereby reducing the production of DAP. The ratiometric fluorescence signal based on a photoinduced electron transfer (PET) effect between DAP and C3N4 NSs is dependent on the concentration of DAP generated, thus achieving highly facile and robust detection of exosomal proteins. Remarkably, the addition of organic solvent-1,4-dioxane can sensitize the luminescence of DAP without affecting the intrinsic fluorescence of C3N4 NSs, achieving the amplification of the aptamer-exosome recognition events. The detection limit for exosome is 2.5 × 103 particles/mL. In addition, the accurate identification of cancer can be achieved by machine learning algorithms to analyze the difference of exosomal proteins from different patients' blood. We hope that this facile, robust, sensitive, and versatile nanozyme sensor array would become a promising tool in the field of cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , Exosomas , Neoplasias , Humanos , Límite de Detección , Biopsia Líquida , Solventes
15.
Anal Chem ; 93(16): 6437-6445, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33844518

RESUMEN

Exosomes are expected to be used as cancer biomarkers because they carry a variety of cancer-related proteins inherited from parental cells. However, it is still challenging to develop a sensitive, robust, and high-throughput technique for simultaneous detection of exosomal proteins. Herein, three aptamers specific to cancer-associated proteins (CD63, EpCAM, and HER2) are selected to connect gold nanoparticles (AuNPs) as core with three different elements (Y, Eu, and Tb) doped up-conversion nanoparticles (UCNPs) as satellites, thereby forming three nanosatellite assemblies. The presence of exosomes causes specific aptamers to recognize surface proteins and release the corresponding UCNPs, which can be simultaneously detected by inductively coupled plasma-mass spectrometry (ICP-MS). It is worth noting that rare earth elements are scarcely present in living systems, which minimize the background for ICP-MS detection and exclude potential interferences from the coexisting species. Using this method, we are able to simultaneously detect three exosomal proteins within 40 min, and the limit of detection for exosome is 4.7 × 103 particles/mL. The exosomes from seven different cell lines (L-02, HepG2, GES-1, MGC803, AGS, HeLa, and MCF-7) can be distinguished with 100% accuracy by linear discriminant analysis. In addition, this analytical strategy is successfully used to detect exosomes in clinical samples to distinguish stomach cancer patients from healthy individuals. These results suggest that this sensitive and high-throughput analytical strategy based on ICP-MS has the potential to play an important role in the detection of multiple exosomal proteins and the identification of early cancer.


Asunto(s)
Exosomas , Nanopartículas del Metal , Neoplasias , Proteínas , ADN , ADN Satélite , Oro , Humanos , Proteínas/análisis
16.
Phys Rev Lett ; 127(25): 255501, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-35029433

RESUMEN

The discovery of topologically protected boundary states in topological insulators opens a new avenue toward exploring novel transport phenomena. The one-way feature of boundary states against disorders and impurities prospects great potential in applications of electronic and classical wave devices. Particularly, for the 3D higher-order topological insulators, it can host hinge states, which allow the energy to transport along the hinge channels. However, the hinge states have only been observed along a single hinge, and a natural question arises: whether the hinge states can exist simultaneously on all the three independent directions of one sample? Here we theoretically predict, numerically simulate, and experimentally observe the hinge states on three different directions of a higher-order topological phononic crystal, and demonstrate their robust one-way transport from hinge to hinge. Therefore, 3D topological hinge transport is successfully achieved. The novel sound transport may serve as the basis for acoustic devices of unconventional functions.

17.
Crit Rev Food Sci Nutr ; 61(19): 3256-3266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32787447

RESUMEN

This review aims to provide research update and progress on applications of advanced molecular spectroscopy to current research on canola related bio-processing technology, molecular structure, and nutrient utilization and availability. The studies focused on how inherent molecular structure changes affect nutritional quality of canola and its co-products from bio-processing. The molecular spectroscopic techniques (SR-IMS, DRIFT, ATR-FTIR) used for molecular structure and nutrition association were reviewed, including the synchrotron radiation with infrared microspectroscopy, the synchrotron radiation with soft x-ray microspectroscopy, the diffuse reflectance infrared Fourier transform spectroscopy, the grading near infrared reflectance spectroscopy, and the Fourier transform infrared vibrational spectroscopy. Nutritional evaluation with other techniques in association with molecular structure was also reviewed. This study provides updated research progress on application of molecular spectroscopy in combination with various nutrition evaluation techniques to current research in the canola-related bio-oil/bio-energy processing and nutrition sciences.


Asunto(s)
Alimentación Animal , Nutrientes , Alimentación Animal/análisis , Estructura Molecular , Valor Nutritivo , Espectroscopía Infrarroja por Transformada de Fourier
18.
Eur Radiol ; 31(8): 5605-5614, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33693995

RESUMEN

OBJECTIVES: To investigate the usefulness of neurite orientation dispersion and density imaging (NODDI) in evaluating cortical tubers, especially epileptogenic tubers in tuberous sclerosis complex (TSC) patients. METHODS: High-resolution conventional MRI and multi-shell diffusion-weighted imaging were performed in 27 TSC patients. Diffusion images were fitted to NODDI and DTI models. Tubers were visually assessed on different image types and scored by two neuroradiologists. For 10 patients who underwent epilepsy surgery, the contrast ratios between lesion and background tissue were measured on different image types, and these were compared between 16 epileptogenic tubers and 92 non-epileptogenic tubers. RESULTS: There were significant differences in lesion conspicuity scores and lesion-background contrast ratios across different sequences (both p < 0.001). The post hoc analysis showed that both the conspicuity scores and contrast ratios of intracellular volume fraction (ICVF) derived from NODDI were higher than other image types. For the 16 epileptogenic tubers, lesion visibility on ICVF was better/equal in 4/12 tubers compared with conventional MRI and better/equal in 5/11 tubers compared with DTI. Significant differences were observed between epileptogenic and non-epileptogenic tubers on diffusion maps, especially on orientation dispersion index derived from NODDI (p < 0.0001). CONCLUSIONS: ICVF demonstrated higher contrast than conventional MRI and DTI, which helped detection of subtle epileptogenic tubers. Moreover, NODDI parameters showed the potential to identify epileptogenicity. KEY POINTS: • The noninvasive localization of epileptogenic cortical tubers is essential for the preparation of epilepsy surgery for TSC patients. • ICVF derived from NODDI showed greater contrast than conventional MRI and DTI in detecting tubers, especially subtle epileptogenic ones. • Diffusion parameters, especially ODI derived from NODDI, can support the identification of epileptogenicity.


Asunto(s)
Epilepsia , Esclerosis Tuberosa , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Epilepsia/diagnóstico por imagen , Epilepsia/etiología , Humanos , Neuritas , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/diagnóstico por imagen
19.
Nanotechnology ; 31(36): 365204, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32464614

RESUMEN

Large polymer residues introduced by the graphene transfer process is still a major obstacle limiting the integration of chemical vapor deposition (CVD)-grown graphene into next-generation electronic and photoelectronic devices. Here we use cera alba, a natural and environmental-friendly material that derives from honeycomb, as the supporting layer for ultraclean graphene transfer. The transferred graphene has a low surface roughness with a surface height fluctuation within 5 nm and an only 80.08% average sheet resistance of the polymethyl methacrylate (PMMA)-transferred graphene. Further, the ultraclean graphene is used as electrodes for the PbI2-based UV photodetector and enables a 135% improvement on responsivity. The cera alba assisted transfer method reported here could achieve clean and damage-free graphene transfer, promoting the application of CVD-grown two-dimensional (2D) materials in large-area thin-film electronic and optoelectronic devices.

20.
Macromol Rapid Commun ; 41(24): e2000102, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32483838

RESUMEN

Dental pulp engineering possesses a promising perspective to replacing lost pulp in the root canal and restoring its functions. Stable adhesion of dental pulp stem cells (DPSCs) on the root canal dentin wall is a key element required for reconstruction of a functional odontoblast layer in dental pulp regeneration. To address this challenge, dopamine-modified hyaluronic acid (DA-HA) is coated on dentin to obtain a stable adhesion of DPSCs. The dopamine segment provides adhesion ability to the coating, and the hyaluronic acid increases the biocompatibility. The results show that DPSCs can adhere on the DA-HA coated dentin slice better than those without coating. Simultaneously, DPSCs proliferation can be further promoted on the prepared coating. Therefore, the DA-HA coating may provide a possible way to immobilize odontoblast cell onto dentin surface for pulp regeneration.


Asunto(s)
Pulpa Dental , Células Madre , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA