Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chem Soc Rev ; 53(3): 1592-1623, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38167687

RESUMEN

Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.


Asunto(s)
Materiales Biocompatibles , Polímeros , Enlace de Hidrógeno , Polímeros/química
2.
J Environ Sci (China) ; 140: 279-291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331508

RESUMEN

Methane is one of the major greenhouse gases (GHGs) and agriculture is recognized as its primary emitter. Methane accounting is a prerequisite for developing effective agriculture mitigation strategies. In this review, methane accounting methods and research status for various agricultural emission source including rice fields, animal enteric fermentation and livestock and poultry manure management were overview, and the influencing factors of each emission source were analyzed and discussed. At the same time, it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation. Finally, mitigation strategies based on accounting results and actual situation are proposed. This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.


Asunto(s)
Gases de Efecto Invernadero , Metano , Animales , Agricultura/métodos , Metano/análisis , Óxido Nitroso/análisis , Aves de Corral , Ganado
3.
Nat Prod Rep ; 39(6): 1282-1304, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35587693

RESUMEN

Covering up to 2022Gossypol is a polyphenolic compound isolated from cottonseed. There are two optical enantiomers of gossypol, (-)-gossypol and (+)-gossypol. Gossypol exists as three different tautomers, aldehyde, ketone and lactol. Gossypol is toxic and provides a protective mechanism for cotton plants against pests. Gossypol was used as a male contraceptive in China in the 1970s. It was eventually abandoned due to noticeable side effects, disruption of potassium uptake and incomplete reversibility. Gossypol has gained considerable research interest due to its attractive biological activities, especially antitumor and antivirus. Gossypol derivatives are prepared by a structural modification to reduce toxicity and improve their therapeutic effect. This review depicts the bioactivity and regulation mechanisms of gossypol and its derivatives as drug lead compounds, with emphasis on its antitumor mechanism. The design and synthesis of pharmacologically active derivatives based on the structure of gossypol, such as gossypol Schiff bases, apogossypol, gossypolone, are thoroughly discussed. This review aims to serve as a reference for gossypol-based drug discovery and drug design.


Asunto(s)
Gosipol , Diseño de Fármacos , Descubrimiento de Drogas , Gosipol/química , Gosipol/farmacología , Humanos , Masculino , Bases de Schiff/química , Estereoisomerismo
4.
Langmuir ; 37(12): 3637-3647, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33740370

RESUMEN

Wettability is a crucial characteristic of materials that plays a vital role in surface engineering. Surface modification is the key to changing the wettability of materials, and a simple and universal modification approach is being extensively pursued by researchers. Recently, metal-phenolic networks (MPNs) have been widely studied because they impart versatility and functionality in surface modification. However, an MPN is not stable for long periods, especially under acidic conditions, and is susceptible to pollution by invasive species. Spurred by the versatility of MPNs and various functionalities achieved by silanization, we introduce a general strategy to fabricate functionally stable coatings with controllable surface wettability by combining the two methods. The formation process of MPN and silane-MPN coatings was characterized by spectroscopic ellipsometry (SE), UV-visible-near-infrared (UV-vis-NIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA), etc. We found that the stability of the MPN was greatly enhanced after silanization, which is attributed to the cross-linking effect that occurs between silane and the MPN, namely, the cross-linking protection produced in this case. Additionally, the wettability of an MPN can be easily changed through our strategy. We trust that our strategy can further extend the applications of MPNs and points toward potential prospects in surface modification.

5.
Mol Pharm ; 17(7): 2487-2498, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32469222

RESUMEN

Fully effective vaccines must induce both potent humoral and cellular immunities. Nanoparticles coencapsulating antigens and adjuvants have shown promising advantages as subunit vaccines in many aspects. However, the low loading efficiency and complicated synthesis process of these nanomaterials need to be improved. Here, we utilized hexahistidine (His6)-metal assembly (HmA) particles as carriers to codeliver ovalbumin peptides and cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs). We found that antigen/adjuvant-carrying HmA can efficiently enter into antigen-presenting cells and help the antigens escape from lysosomes to induce the maturation of these cells in vitro, characterized by increasing expression levels of costimulatory molecules and cytokines. More importantly, the vaccines with high biocompatibility can elicit strong humoral and cellular immunities by improving secretion of specific antibodies and cytokines, enhancing activation of DCs and T cells in vivo. Our results suggest that HmA provides a new approach for subunit vaccines by codelivery of antigens and adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/química , Histidina/química , Nanopartículas del Metal/química , Oligodesoxirribonucleótidos/inmunología , Oligopéptidos/química , Ovalbúmina/inmunología , Vacunas de Subunidad/química , Animales , Anticuerpos/inmunología , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Femenino , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/ultraestructura , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Oligodesoxirribonucleótidos/administración & dosificación , Ovalbúmina/administración & dosificación , Células RAW 264.7 , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
6.
Chem Rec ; 20(6): 513-540, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31631504

RESUMEN

Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.

7.
Molecules ; 24(7)2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30987000

RESUMEN

The stability of gossypol was investigated by the spectroscopic method. Gossypol was dissolved in three different solvents (CHCl3, DMSO, and CH3OH) under different storage conditions (dark and with nitrogen protection, natural light and with nitrogen protection, ambient air conditions) for different time intervals (0 days, 3 days, 5 days, 7 days, 15 days, 30 days, and 45 days) at room temperature. Then, the stability of gossypol was investigated by ¹H NMR, UV-vis, and HPLC-QTOF-MS spectrometry. Results showed that gossypol existed in aldehyde-aldehyde form in chloroform within five days. Then, both aldehyde-aldehyde and lactol-lactol tautomeric forms existed and maintained a stable solution for 45 days. Gossypol dissolved in methanol mainly existed in aldehyde-aldehyde form. Only a tiny amount of lactol-lactol was found in freshly prepared methanol solution. Gossypol was found to only exist in lactol-lactol form between 30-45 days. Gossypol existed in aldehyde-aldehyde, lactol-lactol, and ketol-ketol forms in dimethyl sulfoxide, and there was a competitive relationship between aldehyde-aldehyde and lactol-lactol form during the 45 days. Among all the solvents and conditions studied, gossypol was found to be highly stable in chloroform. Under the tested conditions, the natural light and atmospheric oxygen had little effect on its stability. Although the spectroscopy data seemed to be changed over time in the three different solvents, it was actually due to the tautomeric transformation rather than molecular decomposition.


Asunto(s)
Gosipol/química , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular
8.
Molecules ; 24(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817148

RESUMEN

Polymerization mother liquid (PML) is one of the main sources of wastewater in the chlor-alkali industry. The effective degradation of the PML produced in PVC polymerization using three or five ozone reactors in tandem was designed with a focus on improving the ozonation efficiency. The ozonation efficiency of the tandem reactors for the degradation of PML, along with the effect of ozone concentration, the number of reactors utilized in series, and the reaction time on the chemical oxygen demand (COD) removal were investigated in detail. The results showed that the COD removal increased as the ozone concentration was increased from 10.6 to 60 mg·L-1, achieving 66.4% COD removal at ozone concentration of 80.6 mg·L-1. However, when the ozone concentration was increased from 60 mg·L-1 to 80 mg·L-1, the COD removal only increased very little. The COD decreased with increasing ozone concentration. During the initial degradation period, the degradation rate was the highest at both low and high ozone concentrations. The degradation rate decreased with reaction time. The rate at a low ozone concentration decreased more significantly than at high ozone concentration. Although high ozone concentration is desirable for COD removal and degradation rate, the utilization efficiency of ozone decreased with increasing ozone concentration. The ozone utilization efficiency of the five-reactor device was three times higher than that of three tandem reactors, demonstrating that ozonation utilization efficiency can be improved by increasing the number of tandem reactors. Ozonation in tandem reactors is a promising approach for PML treatment.


Asunto(s)
Ozono/química , Polimerizacion , Cloruro de Polivinilo/química , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Modelos Teóricos , Oxidación-Reducción , Factores de Tiempo
9.
J Mol Recognit ; 31(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28326626

RESUMEN

Molecularly imprinted polymers (MIPs) were designed and prepared via bulk thermal polymerization with gossypol as the template molecule and dimethylaminoethyl methacrylate as the functional monomer. The morphology and microstructures of MIPs were characterized by scanning electron microscope and Brunauer-Emmett-Teller surface areas. Static adsorption tests were performed to evaluate adsorption behavior of gossypol by the MIPs. It was found that adsorption kinetics and adsorption isotherms data of MIPs for gossypol were fit well with the pseudo-second-order model and Freundlich model, respectively. Scatchard analysis showed that heterogeneous binding sites were formed in the MIPs, including lower-affinity binding sites with the maximum adsorption of 252 mg/g and higher-affinity binding sites with the maximum adsorption of 632 mg/g. Binding studies also revealed that MIPs had favorable selectivity towards gossypol compared with non-imprinted polymers. Furthermore, adsorption capacity of MIPs maintained above 90% after 5 regeneration cycles, indicating MIPs were recyclable and could be used multiple times. These results demonstrated that prepared MIPs could be a promising functional material for selective adsorption of gossypol.


Asunto(s)
Gosipol/aislamiento & purificación , Metacrilatos/química , Impresión Molecular , Polímeros/química , Adsorción , Sitios de Unión , Gosipol/química , Polimerizacion , Polímeros/síntesis química , Extracción en Fase Sólida , Espectroscopía Infrarroja por Transformada de Fourier
10.
J Mol Recognit ; 31(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28332252

RESUMEN

Roxarsone, one of feed add drugs containing arsenic, has been most widely used in poultry and swine industry. Roxarsone discharged into the environment has caused serious pollution problem. Herein, a reusable functional material for selective recognition and adsorption of roxarsone and its derivatives were designed and synthesized. The interaction mechanism is based on acid-base interaction and surface molecular imprinting. Dual functionalized core-shell structure with silica gel as the core was prepared to use as carrier for surface molecularly imprinted polymers. Surface molecularly imprinted polymers for roxarsone was successfully designed and synthesized using 3-aminopropyltriethoxysilane and methyl acryloyloxypropyltriethoxy silane as functional monomers, Ethylene glycol dimethacrylate as crosslinker, Azobisisobutyronitrile as initiator, acetonitrile as solvent. Binding study showed that the recognition selectivity for roxarsone and its derivatives can be significantly improved (3.5-4 folds) with molecular imprinting. Moreover, the prepared functional material for selective recognition and adsorption of Roxarsone was reusable for multiple times without significant decreasing their adsorption capacities.


Asunto(s)
Impresión Molecular , Compuestos Orgánicos/química , Aves de Corral , Roxarsona/química , Animales , Arsénico/química , Arsénico/toxicidad , Nitrilos/química , Polímeros/química , Propilaminas/química , Unión Proteica , Roxarsona/análogos & derivados , Silanos/química , Propiedades de Superficie
11.
J Mol Recognit ; 27(7): 448-57, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24895277

RESUMEN

A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs.


Asunto(s)
Impresión Molecular , Polímeros/química , Solventes/química , Adsorción , Soluciones/química , Volumetría
12.
Nanomaterials (Basel) ; 14(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38202557

RESUMEN

Ammonia (NH3) is vital in modern agriculture and industry as a potential energy carrier. The electrocatalytic reduction of nitrate (NO3-) to ammonia under ambient conditions offers a sustainable alternative to the energy-intensive Haber-Bosch process. However, achieving high selectivity in this conversion poses significant challenges due to the multi-step electron and proton transfer processes and the low proton adsorption capacity of transition metal electrocatalysts. Herein, we introduce a novel approach by employing functionalized multi-walled carbon nanotubes (MWCNTs) as carriers for active cobalt catalysts. The exceptional conductivity of MWCNTs significantly reduces charge transfer resistance. Their unique hollow structure increases the electrochemical active surface area of the electrocatalyst. Additionally, the one-dimensional hollow tube structure and graphite-like layers within MWCNTs enhance adsorption properties, thus mitigating the diffusion of intermediate and stabilizing active cobalt species during nitrate reduction reaction (NitRR). Using the MWCNT-supported cobalt catalyst, we achieved a notable NH3 yield rate of 4.03 mg h-1 cm-2 and a high Faradaic efficiency of 84.72% in 0.1 M KOH with 0.1 M NO3-. This study demonstrates the potential of MWCNTs as advanced carriers in constructing electrocatalysts for efficient nitrate reduction.

13.
RSC Adv ; 14(11): 7499-7506, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38440268

RESUMEN

The difference of NH3 oxidation mechanism over SAPO-34 and Cu-SAPO-34 was studied. XRD (X-ray diffraction), SEM (scanning electron microscopy) and H2-TPR (H2-temperature programmed desorption) were conducted to estimate the Cu species distribution. The quantity of individual Cu2+ ions escalated with the elevation of silicon content in the Cu/SAPO-34 catalysts, leading to an enhancement in the activity of the NH3-SCR (ammonia-selective catalytic reduction) process. This augmentation in activity can be attributed to the increased presence of isolated Cu2+ species, which are pivotal in facilitating the catalytic reaction. In addition, the kinetic test of NH3 oxidation indicated that the CuO species were the active sites for NH3 oxidation. Specifically, the strong structural Brønsted acid sites were the NH3 oxidation active sites over the SAPO-34 support, and the NH3 reacted with the O2 on the Brønsted acid sites to produce the NO mainly. While the NH3 oxidation mechanism over Cu/SAPO-34 consisted of two steps: firstly, NH3 reacted with O2 on CuO sites or residual Brønsted acid sites to form NO as the product; subsequently, the generated NO was reduced by NH3 into N2 on isolated Cu2+ sites. Simultaneously, the isolated Cu2+ sites might demonstrate a significant function in the NH3 oxidation process to form N2. The identification of active sites and corresponding mechanism could deepen the understanding of excellent performance of NH3-SCR over the Cu/SAPO-34 catalyst at high temperature.

14.
Adv Sci (Weinh) ; 11(23): e2401889, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554399

RESUMEN

All-solid-state batteries (ASSBs) based on inorganic solid electrolytes fascinate a large body of researchers in terms of overcoming the inferior energy density and safety issues of existing lithium-ion batteries. To date, the cathode designs in the ASSBs achieve remarkable achievements, adding the urgency of scaling up the battery system toward inorganic solid-state pouch cell configuration for the application market. Herein, the recent developments of cathode materials and the design considerations for their application in the pouch cell format are reviewed to straighten out the roadmap of ASSBs. Specifically, the intercalation compounds and the conversion materials with conversion chemistries are highlighted and discussed as two potentially valuable material types. This review focuses on the basic electrochemical mechanisms, mechanical contact issues, and sheet-type structure in inorganic solid-state pouch cells with corresponding perspectives, thus guiding the future research direction. Finally, the benchmarks for manufacturing inorganic solid-state pouch cells to meet practical high energy density targets are provided in this review for the development of commercially viable products.

15.
Environ Sci Pollut Res Int ; 30(14): 41937-41953, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640232

RESUMEN

In recent years, traditional energy sources have caused a variety of negative impacts on the environment, and reducing carbon emissions is a top priority. The development of renewable energy technology is the key to transform the energy structure. Renewable energy represented by wind energy and photovoltaics has abundant reserves so they are connected to the grid system on a large scale. However, because of natural energy's randomness, renewable energy power generation poses potential risks to energy production and grid security. By making short-term forecasts of renewable energy generation power, the uncertainty of energy generation can be reduced, and it is crucial to study renewable energy forecasting techniques. This paper proposes an integrated forecasting system for renewable energy sources. Firstly, ensemble empirical mode decomposition is used for data preprocessing, and stationarity analysis is used for modal identification; then, support vector regression optimized by sparrow search algorithm and statistical methods are combined to make forecast according to different characteristics of the series respectively; finally, the feasibility of this method in renewable energy time series prediction is verified by experiments. The experiments prove that the proposed model effectively improves the accuracy and prediction performance on ultra-short-term renewable energy forecasting; and it has good applicability and competitiveness with different forecasting scenarios and characteristics, which satisfy the actual forecasting requirements in terms of operational efficiency and accuracy, thus providing a technical basis for the effective utilization of renewable energy.


Asunto(s)
Algoritmos , Energía Renovable , Viento , Fuentes Generadoras de Energía , Predicción , Aprendizaje Automático
16.
Nanomicro Lett ; 15(1): 166, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394676

RESUMEN

Molybdenum carbide (Mo2C) materials are promising electrocatalysts with potential applications in hydrogen evolution reaction (HER) due to low cost and Pt-like electronic structures. Nevertheless, their HER activity is usually hindered by the strong hydrogen binding energy. Moreover, the lack of water-cleaving sites makes it difficult for the catalysts to work in alkaline solutions. Here, we designed and synthesized a B and N dual-doped carbon layer that encapsulated on Mo2C nanocrystals (Mo2C@BNC) for accelerating HER under alkaline condition. The electronic interactions between the Mo2C nanocrystals and the multiple-doped carbon layer endow a near-zero H adsorption Gibbs free energy on the defective C atoms over the carbon shell. Meanwhile, the introduced B atoms afford optimal H2O adsorption sites for the water-cleaving step. Accordingly, the dual-doped Mo2C catalyst with synergistic effect of non-metal sites delivers superior HER performances of a low overpotential (99 mV@10 mA cm-2) and a small Tafel slope (58.1 mV dec-1) in 1 M KOH solution. Furthermore, it presents a remarkable activity that outperforming the commercial 10% Pt/C catalyst at large current density, demonstrating its applicability in industrial water splitting. This study provides a reasonable design strategy towards noble-metal-free HER catalysts with high activity.

17.
Environ Sci Pollut Res Int ; 30(8): 21225-21237, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36269484

RESUMEN

Our world needs to develop clean energy to reach the target of carbon peak and carbon neutralization. As one of clean energy, wind energy should contribute to energy conservation and emission reduction. Wind power generation is an important field of wind energy application. However, the fluctuation and intermittency of wind can affect the safety of power system. Therefore, prediction of wind power accurately for wind power safety, dispatching, and power grid development is significant. This paper proposes a prediction model of wind power, and predicts the wind power of two wind farms. For the complex wind speed series, the variational modal decomposition (VMD) method is used to reduce its volatility before prediction. And this paper presents an improved method to improve the prediction efficiency when least square support vector machine (LSSVM) predicts stationary series. The prediction result shows that the proposed model improves the prediction of wind power effectively, provides an effective method for wind farm to predict the wind power, and makes contributions to reducing carbon emissions and environmental protection.


Asunto(s)
Fuentes Generadoras de Energía , Viento , Argentina , Energía Renovable , China , Carbono
18.
Nanomaterials (Basel) ; 13(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110884

RESUMEN

Biochar is considered as a promising candidate for emerging sustainable energy systems and environmental technology applications. However, the improvement of mechanical properties remains challenges. Herein, we propose a generic strategy to enhance the mechanical properties of bio-based carbon materials through inorganic skeleton reinforcement. As a proof-of-concept, silane, geopolymer, and inorganic gel are selected as precursors. The composites' structures are characterized and an inorganic skeleton reinforcement mechanism is elucidated. Specifically, two types of reinforcement of the silicon-oxygen skeleton network formed in situ with biomass pyrolysis and the silica-oxy-al-oxy network are constructed to improve the mechanical properties. A significant improvement in mechanical strength was achieved for bio-based carbon materials. The compressive strength of well-balanced porous carbon materials modified by silane can reach up to 88.9 kPa, geopolymer-modified carbon material exhibits an enhanced compressive strength of 36.8 kPa, and that of inorganic-gel-polymer-modified carbon material is 124.6 kPa. Moreover, the prepared carbon materials with enhanced mechanical properties show excellent adsorption performance and high reusability for organic pollutant model compound methylene blue dye. This work demonstrates a promising and universal strategy for enhancing the mechanical properties of biomass-derived porous carbon materials.

19.
Adv Sci (Weinh) ; 10(22): e2301834, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37211707

RESUMEN

Cigarettes, despite being economically important legal consumer products, are highly addictive and harmful, particularly to the respiratory system. Tobacco smoke is a complex mixture containing over 7000 chemical compounds, 86 of which are identified to have "sufficient evidence of carcinogenicity" in either animal or human tests. Thus, tobacco smoke poses a significant health risk to humans. This article focuses on materials that help reduce the levels of major carcinogens in cigarette smoke; these include nicotine, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, hydrogen cyanide, carbon monoxide, and formaldehyde. Specifically, the research progress on adsorption effects and mechanisms of advanced materials such as cellulose, zeolite, activated carbon, graphene, and molecularly imprinted polymers are highlighted. The future trends and prospects in this field are also discussed. Notably, with advancements in supramolecular chemistry and materials engineering, the design of functionally oriented materials has become increasingly multidisciplinary. Certainly, several advanced materials can play a critical role in reducing the harmful effects of cigarette smoke. This review aims to serve as an insightful reference for the design of hybrid and functionally oriented advanced materials.


Asunto(s)
Fumar Cigarrillos , Contaminación por Humo de Tabaco , Humanos , Contaminación por Humo de Tabaco/análisis , Adsorción , Carcinógenos/análisis
20.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986031

RESUMEN

In the field of flexible electronics manufacturing, inkjet printing technology is a research hotspot, and it is key to developing low-temperature curing conductive inks that meet printing requirements and have suitable functions. Herein, methylphenylamino silicon oil (N75) and epoxy-modified silicon oil (SE35) were successfully synthesized through functional silicon monomers, and they were used to prepare silicone resin 1030H with nano SiO2. 1030H silicone resin was used as the resin binder for silver conductive ink. The silver conductive ink we prepared with 1030H has good dispersion performance with a particle size of 50-100 nm, as well as good storage stability and excellent adhesion. Additionally, the printing performance and conductivity of the silver conductive ink prepared with n,n-dimethylformamide (DMF): proprylene glycol monomethyl ether (PM) (1:1) as solvent are better than those of the silver conductive ink prepared by DMF and PM solvent. Cured at a low temperature of 160 °C, the resistivity of 1030H-Ag-82%-3 conductive ink is 6.87 × 10-6 Ω·m, and that of 1030H-Ag-92%-3 conductive ink is 0.564 × 10-6 Ω·m, so the low-temperature curing silver conductive ink has high conductivity. The low-temperature curing silver conductive ink we prepared meets the printing requirements and has potential for practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA