RESUMEN
In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG. Loss-of-function mutation of BIN2 and its homologs (bin2-3 bil1 bil2) reduced VLG abundance and mimicked vlg/VLG phenotypes. Knocking down VLG in bin2-1 decreased the ratio of aberrant vacuole formation at stage FG1, whereas FG1-specific overexpression of VLG mimicked the bin2-1 phenotype. VLG partially rescued the bin2-3 bil1 bil2 phenotype, demonstrating that VLG acts downstream of BIN2. Mutation of VLG residues that are phosphorylated by BIN2 altered VLG stability and a phosphorylation mimic of VLG causes similar defects as did bin2-1. Therefore, BIN2 may function by interacting with and phosphorylating VLG in the FG to enhance its stability and abundance, thus facilitating vacuole formation. Our findings provide mechanistic insight into how the BIN2-VLG module regulates the spatiotemporal formation of the large vacuole in FG development.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Células Germinativas de las Plantas/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Vacuolas/metabolismoRESUMEN
Ovule initiation determines the maximum ovule number and has great impact on seed number and yield. However, the regulation of ovule initiation remains largely elusive. We previously reported that most of the ovule primordia initiate asynchronously at floral stage 9 and PINFORMED1 (PIN1) polarization and auxin distribution contributed to this process. Here, we further demonstrate that a small amount of ovule primordia initiate at floral stage 10 when the existing ovules initiated at floral stage 9 start to differentiate. Genetic analysis revealed that the absence of PIN3 function leads to the reduction in pistil size and the lack of late-initiated ovules, suggesting PIN3 promotes the late ovule initiation process and pistil growth. Physiological analysis illustrated that, unlike picloram, exogenous application of NAA can't restore these defective phenotypes, implying that PIN3-mediated polar auxin transport is required for the late ovule initiation and pistil length. qRT-PCR results indicated that the expression of SEEDSTICK (STK) is up-regulated under auxin analogues treatment while is down-regulated in pin3 mutants. Meanwhile, overexpressing STK rescues pin3 phenotypes, suggesting STK participates in PIN3-mediated late ovule initiation possibly by promoting pistil growth. Furthermore, brassinosteroid influences the late ovule initiation through positively regulating PIN3 expression. Collectively, this study demonstrates that PIN3 promotes the late ovule initiation and contributes to the extra ovule number. Our results give important clues for increasing seed number and yield of cruciferous and leguminous crops.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Dominio MADS/genética , Óvulo Vegetal/genéticaRESUMEN
Insects have evolved complex sensory systems that are important for feeding, defence and reproduction. Parasitoid wasps often spend much time and effort in searching for concealed hosts with the help of specialized sensilla. However, the early evolution of such behaviour and sensilla is poorly known. We describe two fossil female wasps, Tichostephanus kachinensis sp. nov. and Tichostephanus longus sp. nov., from mid-Cretaceous Kachin amber. Phylogenetic analyses based on morphological data retrieved Tichostephanus as deeply nested within Evanioidea and closely related to extant Gasteruptiidae and Evaniidae. Both of these Cretaceous wasps possess features, e.g. coronal tubercles and flexible ovipositor sheaths, that indicate that they might have laid eggs in wood where their larvae possibly parasitized insect larvae. They have a peculiar and unique 'bottle brush' of sensilla close to the apex of their ovipositor sheaths, which has not been observed in any extant parasitoid wasps. These sensilla comprise many regularly arranged plate-shaped setae, attached in relatively large sockets and with rows of longitudinal ridges. Such specialized sensilla perhaps served to enhance the ability to detect hosts inside wood.
RESUMEN
OBJECTIVES: The study investigated whether percutaneous partial pressure of oxygen (PtcO2), percutaneous partial pressure of carbon dioxide (PtcCO2), and the derived tissue perfusion index (TPI) can predict the severity and short-term outcomes of severe and critical COVID-19. DESIGN: Prospective observational study conducted from January 1, 2023 to February 10, 2023. SETTING: A teaching hospital specializing in tertiary care in Nanjing City, Jiangsu Province, China. PARTICIPANTS: Adults (≥18 years) with severe and critical COVID-19. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The general information and vital signs of the patients were collected. The PtcO2 and PtcCO2 were monitored in the left dorsal volar. The ratio of TPI was defined as the ratio of PtcO2/fraction of inspired oxygen (FiO2) to PtcCO2. Mortality at 28 was recorded. The ability of the TPI to assess disease severity and predict prognosis was determined. ENDPOINT: Severity of the disease on the enrollment and mortality at 28. RESULTS: A total of 71 patients with severe and critical COVID-19, including 40 severe and 31 critical cases, according to the COVID-19 treatment guidelines published by WHO, were recruited. Their median age was 70 years, with 56 (79%) males. The median SpO2/FiO2, PtcO2, PtcCO2, PtcO2/ FiO2, and TPI values were 237, 61, 42, 143, and 3.6â mm Hg, respectively. Compared with those for severe COVID-19, the TPI, PtcO2/ FiO2, SpO2/FiO2, and PtcO2 were significantly lower in critical COVID-19, while the PtcCO2 was significantly higher. After 28 days, 26 (37%) patients had died. TPI values < 3.5 were correlated with more severe disease status (AUC 0.914; 95% CI: 0.847-0.981, P < 0.001), and TPI < 3.3 was associated with poor outcomes (AUC 0.937; 95% CI 0.880-0.994, P < 0.001). CONCLUSIONS: The tissue perfusion index (TPI), PtcCO2, and PtcO2/ FiO2 can predict the severity and outcome of severe and critical COVID-19.
RESUMEN
We study the small mass limit in mean field theory for an interacting particle system with non-Gaussian Lévy noise. When the Lévy noise has a finite second moment, we obtain the limit equation with convergence rate ε+1/εN, by taking first the mean field limit Nâ∞ and then the small mass limit εâ0. If the order of the two limits is exchanged, the limit equation remains the same but has a different convergence rate ε+1/N. However, when the Lévy noise is α-stable, which has an infinite second moment, we can only obtain the limit equation by taking first the small mass limit and then the mean field limit, with the convergence rate 1/Nα-1+1/Np2+εp/α where p∈(1,α). This provides an effectively limit model for an interacting particle system under a non-Gaussian Lévy fluctuation, with rigorous error estimates.
RESUMEN
Climate change and human activities have significantly influenced soil loss and the soil conservation service, posed threats to regional ecological sustainability. However, the relationships and underlying driving forces between potential soil loss, actual soil loss, and soil conservation service have not been well understood. Utilizing the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, we evaluated the soil conservation service on the Tibetan plateau from 1990 to 2020. We analyzed the spatial and temporal trends and examined the driving factors using linear regression, Pearson correlation, and random forest regression. The soil conservation service exhibited a complex pattern of increase followed by a decrease, with a turning point around 2010. Soil conservation service and soil loss demonstrated non-trade-off changes. The potential soil loss dominated the spatiotemporal patterns of soil conservation service on the Tibetan Plateau. Climatic factors significantly influenced the spatiotemporal patterns of soil conservation service, with annual precipitation emerging as the dominant driving factor, contributing approximately 20%. However, the impacts of human activities became more pronounced since 2010, and the contribution of vegetation to changes in soil conservation service was increased. The impact of the Normalized Difference Vegetation Index (NDVI) on soil conservation service for the grades I, II, and III increased by 13.19%, 3.08%, and 3.41%, respectively. Conversely, in northern Tibet before 2010 and eastern Three-River-Source after 2010, soil conservation service exhibited an increasing trend driven by both climate factors and human activities. Which indicates that the implementation of ecological restoration measures facilitated vegetation improvement and subsequently reduced actual soil loss. This study provides a scientific basis for resource management, land development strategies, and the formulation of ecological restoration measures on the Tibetan Plateau.
RESUMEN
Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.
Asunto(s)
Pan , Dextranos , Glútenes , Almidón , Triticum , Pan/análisis , Pan/normas , Almidón/química , Glútenes/química , Dextranos/química , Triticum/química , Fermentación , Manipulación de Alimentos/métodos , Calidad de los AlimentosRESUMEN
Purpose: The aim of this systematic review was to (1) estimate the prevalence of adhering to the MSE guidelines (at least 2 times/days a week) among adults; and (2) synthesize evidence on the correlates of adhering to the MSE guidelines. Methods: Five electronic databases were searched (March 2022), with a total of 30 observational studies consisting of 2,629,508 participants meeting the eligibility criteria. A meta-analysis was conducted to pool the prevalence of adhering to the MSE guidelines using the results of 21 eligible studies (study aim 1); and data reporting correlates of adhering to the MSE guidelines using 12 eligible studies were synthesized and categorized based on the Socioecological Model Framework (study aim 2). Results: Overall, 22.8 % (95%CI: 18.18 % â 27.77 %) of adults adhered to the MSE guidelines, and 23 potential correlates at five levels were examined. Five variables (i.e., sex, age, education level, socioeconomic status) at the sociodemographic level and two variables (i.e., body mass index, self-rated health) at the physical related level were identified as consistent correlates, but displaying weak to moderate association strengths. Conclusions: Less than a quarter of adults meet the MSE guidelines and multidimensional correlates are associated with the adherence to the guidelines, particularly sociodemographic correlates (e.g., sex, age, and educational level). Findings highlight the need to further promote the importance of engaging in MSE among adults and investing effective interventions that not only provide opportunities for MSE for adults, but also facilitate the development of skills and confidence to engage in MSE.
RESUMEN
There is a lack of understanding about the bacterial, fungal and archaeal communities' composition of solid-phase denitrification (SPD) systems. We investigated four SPD systems with different carbon sources by analyzing microbial gene sequences based on operational taxonomic unit (OTU) and amplicon sequence variant (ASV). The results showed that the corncob-polyvinyl alcohol sodium alginate-polycaprolactone (CPSP, 0.86±0.04 mg NO3--N/(g·day)) and corncob (0.85±0.06 mg NO3--N/(g·day)) had better denitrification efficiency than polycaprolactone (PCL, 0.29±0.11 mg NO3--N/(g·day)) and polyvinyl alcohol-sodium alginate (PVA-SA, 0.24±0.07 mg NO3--N/(g·day)). The bacterial, fungal and archaeal microbial composition was significantly different among carbon source types such as Proteobacteria in PCL (OTU: 83.72%, ASV: 82.49%) and Rozellomycota in PVA-SA (OTU: 71.99%, ASV: 81.30%). ASV methods can read more microbial units than that of OTU and exhibit higher alpha diversity and classify some species that had not been identified by OTU such as Nanoarchaeota phylum, unclassified_ f_ Xanthobacteraceae genus, etc., indicating ASV may be more conducive to understand SPD microbial communities. The co-occurring network showed some correlation between the bacteria fungi and archaea species, indicating different species may collaborate in SPD systems. Similar KEGG function prediction results were obtained in two bioinformatic methods generally and some fungi and archaea functions should not be ignored in SPD systems. These results may be beneficial for understanding microbial communities in SPD systems.
Asunto(s)
Bacterias , Carbono , Desnitrificación , Microbiota , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Carbono/metabolismo , Archaea/genética , Archaea/metabolismo , Hongos/metabolismoRESUMEN
Plant ovule initiation determines the maximum of ovule number and has a great impact on the seed number per fruit. The detailed processes of ovule initiation have not been accurately described, although two connected processes, gynoecium and ovule development, have been investigated. Here, we report that ovules initiate asynchronously. The first group of ovule primordia grows out, the placenta elongates, the boundaries of existing ovules enlarge and a new group of primordia initiates from the boundaries. The expression pattern of different marker genes during ovule development illustrates that this asynchronicity continues throughout whole ovule development. PIN-FORMED1 polar distribution and auxin response maxima correlate with ovule primordia asynchronous initiation. We have established computational modeling to show how auxin dynamics influence ovule primordia initiation. Brassinosteroid signaling positively regulates ovule number by promoting placentae size and ovule primordia initiation through strengthening auxin response. Transcriptomic analysis demonstrates numerous known regulators of ovule development and hormone signaling, and many new genes are identified that are involved in ovule development. Taken together, our results illustrate that the ovule primordia initiate asynchronously and the hormone signals are involved in the asynchrony.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Transporte de Membrana/genética , Óvulo Vegetal/genética , Desarrollo de la Planta/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Óvulo Vegetal/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Transducción de Señal/genéticaRESUMEN
Tomato fruit ripening is a unique process of nutritional and energy metabolism. Target of rapamycin (TOR), a conserved serine/threonine protein kinase in eukaryotes, controls cell growth and metabolism by integrating nutrient, energy, and hormone signals. However, it remains unclear whether TOR participates in the modulation of tomato fruit ripening. Here, we showed that the manipulation of SlTOR by chemical or genetic methods greatly alters the process of tomato fruit maturation. Expression pattern analysis revealed that the transcripts of SlTOR declined as fruit ripening progressed. Moreover, suppression of SlTOR by TOR inhibitor AZD8055 or knock down of its transcripts by inducible RNA interference, accelerated fruit ripening, and led to overall effects on fruit maturity, including changes in colour and metabolism, fruit softening, and expression of ripening-related genes. Genome-wide transcription analysis indicated that silencing SlTOR reprogrammed the transcript profile associated with ripening, including cell wall and phytohormone pathways, elevated the expression of ethylene biosynthetic genes, and further promoted ethylene production. In contrast, the ethylene action inhibitor 1-MCP efficiently blocked fruit maturation, even following SlTOR inhibition. These results suggest that accelerated fruit ripening caused by SlTOR inhibition depends on ethylene, and that SlTOR may function as a regulator in ethylene metabolism.
Asunto(s)
Frutas , Solanum lycopersicum , Frutas/metabolismo , Solanum lycopersicum/genética , Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
To describe the characteristics of multiple myeloma (MM) by retrospectively analyzing data from patients with MM in hematology, nephrology, and orthopedic departments, we selected inpatients diagnosed with MM for the first time who were admitted to the hematology department of Taizhou Hospital of Zhejiang Province between January 1, 2017, and June 30, 2021 ([Formula: see text]) and those admitted to the nephrology ([Formula: see text]) and orthopedic ([Formula: see text]) departments of Taizhou Hospital of Zhejiang Province between January 1, 2010, and June 30, 2021. For patients with MM initially diagnosed in the nephrology or orthopedic departments, age- and sex-matched patients without MM were randomly selected in a 1:1 ratio. Conditional logistic regression models were used to assess the risk of MM in hospitalized patients in the nephrology and orthopedic departments. This study included 200 patients, with a median age of 65 years. There were differences among patients in the three departments with respect to fracture, degree of anemia, proteinuria levels, red blood cell (RBC) count, hemoglobin levels, total protein (TP) levels, albumin levels, and laboratory indicators of renal function. TP levels > 68.45 g/L were independent risk factors for patients in the nephrology department (odds ratio (OR) = 1.01, 95% confidence interval (CI) = 1.001-1.024, P = 0.04), and RBC count < 3.79 × 1012/L was an independent risk factor for orthopedic inpatients (OR = 0.49, 95% CI 0.268-0.913, P = 0.02). Therefore, nephrologists should pay attention to the TP level of hospitalized patients to facilitate the early identification of MM in patients with chronic kidney disease. Orthopedic surgeons should pay attention to RBC counts in patients with fractures, and patients with low RBC counts should avoid unnecessary surgery and move to specialist care as early as possible.
Asunto(s)
Anemia , Hematología , Mieloma Múltiple , Nefrología , Humanos , Anciano , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/epidemiología , Mieloma Múltiple/terapia , Pacientes Internos , Estudios Retrospectivos , Anemia/epidemiología , Anemia/etiologíaRESUMEN
Chemoresistance contributes to poor survival and high relapse risk in acute myeloid leukemia (AML). As a pro-inflammatory cytokine, interleukin-6 (IL-6) plays a vital role in the chemoresistance of malignancies. However, the underlying mechanisms of chemoresistance in AML have not been widely studied. Lipid metabolism, which contributes to chemoresistance in AML, is enhanced by IL-6 in skeletal muscle cells. We hypothesized that IL-6 promotes the chemoresistance of AML by promoting lipid metabolism. Based on the positive correlation between IL-6 receptor expression and the cellular response to exogenous IL-6, we performed Gene Ontology analysis of a dataset consisting the information of 151 AML patients from The Cancer Genome Atlas. We found that lipid transport-associated genes were upregulated in the high IL-6 receptor expression group. Additionally, IL-6 promoted fatty acid (FA) uptake in both AML cell lines and primary AML cells. Inhibition of FA uptake by sulfo-N-succinimidyl oleate repressed IL-6-induced chemoresistance. Western blotting, quantitative polymerase chain reaction, and chromatin immunoprecipitation assays indicated that IL-6 promoted CD36 expression at both the mRNA and protein levels through stat3 signaling. Knockout of CD36 or stat3 repressed IL-6-induced FA uptake and chemoresistance. Furthermore, in five human AML samples, we validated that compared to CD36-cells, CD36+ primary AML cells were less sensitive to cytosine arabinoside (Ara-c) and that blockade of CD36 re-sensitized CD36+ AML cells to Ara-c. Mice injected with CD36 knockout cells followed by treatment with Ara-c showed markedly decreased leukemia burden and prolonged survival in vivo. Finally, treatment with the CD36 antibody in combination with Ara-c exhibited synergistic effects in vivo. In conclusion, IL-6 promotes chemoresistance in AML through the stat3/CD36-mediated FA uptake. Blockade of CD36 improved the effect of Ara-c, representing a promising strategy for AML therapy.
Asunto(s)
Resistencia a Antineoplásicos , Ácidos Grasos , Interleucina-6 , Leucemia Mieloide Aguda , Receptores de Interleucina-6 , Animales , Citarabina/farmacología , Ácidos Grasos/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones NoqueadosRESUMEN
MFC anodic denitrification is more suitable for the coexistence of organic matter and nitrate in actual sewage, but the traditional carbon source has some problems such as high cost and difficulty of dosage control in MFC. Herein, corncob and polycaprolactone (PCL) were mechanically pulverized and mixed in the system of polyvinyl alcohol and sodium alginate, and cross-linked to prepare slow-release carbon source fillers (CPSP), which were added to the MFC anolyte to realize the coupling of solid-phase denitrification and anodic denitrification. Results showed the start-up period of MFC experimental group (MFC-C) with CPSP was slightly longer than the control group (MFC-0), but MFC-C's maximum output voltage (648.4 mV) and power density (2738 mW/m3) could be increased by 5% and 15% higher than that of MFC-0 (P < 0.05). The degradation process of MFC substrate in unit cycle was mainly divided into nitrogen removal stage (0-8 h) and electricity generation stage (8-48 h). The NO3--N and COD degradation and power generation kinetic processes of MFC conformed to the Han-Levenspiel model. Kinetics experiments showed CPSP can improve the affinity and tolerance of MFC to NO3--N, also it can alleviate the pressure of electron competition in anolyte and improve coulombic efficiency. In addition, microbial communities were significantly changed under the effect of CPSP (P < 0.001). Meanwhile, CPSP can promote the synthesis of denitrification functional genes. This study provides a new strategy to improve the performance of MFC by the addition of novel denitrification carbon source.
RESUMEN
Cylindrical components are parts with curved surfaces, and their high-precision defect testing is of great significance to industrial production. This paper proposes a noncontact internal defect imaging method for cylindrical components, and an automatic photoacoustic testing platform is built. A synthetic aperture focusing technology in the polar coordinate system based on laser ultrasonic (LU-pSAFT) is established, and the relationship between the imaging quality and position of discrete points is analyzed. In order to verify the validity of this method, small holes of Φ0.5 mm in the aluminum alloy rod are tested. During the imaging process, since a variety of waveforms can be excited by the pulsed laser synchronously, the masked longitudinal waves reflected by small holes need to be filtered and windowed to achieve high-quality imaging. In addition, the influence of ultrasonic beam angle and signal array spacing on imaging quality is analyzed. The results show that the method can accurately present the outline of the small hole, the circumferential resolution of the small hole is less than 1° and the dimensional accuracy and position error are less than 0.1 mm.
RESUMEN
Abscisic acid (ABA) plays an important role in the response of plants to drought stress. However, the chemical structure of ABA is unstable, which severely limits its application in agricultural production. Here, we report the identification of a small molecule compound of tetrazolium as an ABA analog (named SLG1) through virtual screening. SLG1 inhibits the seedling growth and promotes drought resistance of Arabidopsis thaliana with higher stability. Yeast two-hybrid and PP2C inhibition assays show that SLG1 acts as a potent activator of multiple ABA receptors in A. thaliana. Results of molecular docking and molecular dynamics show that SLG1 mainly binds to PYL2 and PYL3 through its tetrazolium group and the combination is stable. Together, these results demonstrate that SLG1, as an ABA analogue, protects A. thaliana from drought stress. Moreover, the newly identified tetrazolium group of SLG1 that binds to ABA receptors can be used as a new option for structural modification of ABA analogs.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Sequía , Simulación del Acoplamiento Molecular , Sequías , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Receptores de Superficie Celular/metabolismoRESUMEN
Solid-phase denitrification (SPD) has been used in wastewater treatment plant effluent to enhance nitrate removal, and antibiotics co-existing in the effluent is a common environmental problem. In this study, it was systematically investigated the effect of single trace sulfamethoxazole (SMX)/trimethoprim (TMP) and their mixture on microbial denitrification performance, the antibiotics removal, and antibiotics resistance genes (ARGs) in corncob supported SPD system. The average denitrification rate was improved by 46.90% or 61.09% with single 50 µg/L SMX or TMP, while there was no significant inhibition with mixed SMX and TMP. The abundance of dominant denitrifiers (Comamonadaceae family and Azospia) and fermentation bacteria (Ancalomicrobium) were consistent with the denitrification performance of different antibiotics groups. Single SMX and TMP achieved relatively higher denitrification gene and enzyme abundance. Mixed SMX and TMP improved the denitrification gene copies, but they reduced the key denitrification enzymes except for EC 1.7.7.2. Additionally, the removal efficiency of TMP (56.70% ± 3.18%) was higher than that of SMX (25.44% ± 2.62%) in single antibiotic group, and the existence of other antibiotics (i.e. SMX or TMP) had no significant impact on the TMP or SMX removal performance. Biodegradation was the main removal mechanism of SMX and TMP, while sludge and corncob adsorption contributed a little to their removal. SMX had the risk of sulfanilamide resistance genes (SRGs) dissemination. Furthermore, network analysis indicated that Niveibacterium and Bradyrhizobium were the potential hosts of SRGs, which promoted the horizontal transmission of ARGs.
Asunto(s)
Antibacterianos , Zea mays , Antibacterianos/farmacología , Desnitrificación , Combinación Trimetoprim y Sulfametoxazol , Farmacorresistencia Microbiana/genética , SulfametoxazolRESUMEN
Transition metal catalysts (TMCs) mediated bioorthogonal uncaging catalysis has sparked increasing interest in prodrug activation. However, due to their "always-on" catalytic activity as well as the complex and catalytic-detrimental intracellular environment, the biosafety and therapeutic efficiency of TMCs are unsatisfactory. Herein, a DNA-gated and self-protected bioorthogonal catalyst has been designed by modifying nanozyme-Pd0 with highly programmable nucleic acid (DNA) molecules to achieve efficient intracellular drug synthesis for cancer therapy. Monolayer DNA molecules could endow the catalyst with targeting and perform as a gatekeeper to achieve selective prodrug activation within cancer cells. Meanwhile, the prepared graphitic nitrogen-doped carbon nanozyme with glutathione peroxidase (GPx) and catalase (CAT)-like activities could improve the catalytic-detrimental intracellular environment to prevent the catalyst from being inactivated and sensitize the subsequent chemotherapy. Overall, we believe that our work will promote the development of secure and efficient bioorthogonal catalytic systems and provide new insights into novel antineoplastic platforms.
Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Elementos de Transición , Humanos , Catálisis , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
Vestimentiferan tubeworms are iconic animals that present as large habitat-forming chitinized tube bushes in deep-sea chemosynthetic ecosystems. They are gutless and depend entirely on their endosymbiotic sulfide-oxidizing chemoautotrophic bacteria for nutrition. Information on the genomes of several siboglinid endosymbionts has improved our understanding of their nutritional supplies. However, the interactions between tubeworms and their endosymbionts remain largely unclear due to a paucity of host genomes. Here, we report the chromosome-level genome of the vestimentiferan tubeworm Paraescarpia echinospica. We found that the genome has been remodeled to facilitate symbiosis through the expansion of gene families related to substrate transfer and innate immunity, suppression of apoptosis, regulation of lysosomal digestion, and protection against oxidative stress. Furthermore, the genome encodes a programmed cell death pathway that potentially controls the endosymbiont population. Our integrated genomic, transcriptomic, and proteomic analyses uncovered matrix proteins required for the formation of the chitinous tube and revealed gene family expansion and co-option as evolutionary mechanisms driving the acquisition of this unique supporting structure for deep-sea tubeworms. Overall, our study provides novel insights into the host's support system that has enabled tubeworms to establish symbiosis, thrive in deep-sea hot vents and cold seeps, and produce the unique chitinous tubes in the deep sea.
Asunto(s)
Respiraderos Hidrotermales , Simbiosis , Animales , Quitina , Ecosistema , Genómica , Respiraderos Hidrotermales/microbiología , Proteómica , Simbiosis/genéticaRESUMEN
Heading date, panicle architecture, and grain size are key traits that affect the yield of rice (Oryza sativa). Here, we identified a new gene, OsGATA6, whose product regulates heading date. Overexpression of OsGATA6 resulted in delayed heading, increased grain number, and decreased grain size. Knockdown lines generated by artificial microRNA (amiRNA) and CRISPR genome-edited lines of OsGATA6 both showed earlier heading, decreased grain number, and increased grain size. These results suggested that OsGATA6 negatively regulates heading date, positively regulates panicle development, and affects grain size. OsGATA6 was found to be constitutively expressed in rice, and strongly expressed in young leaves and panicles. In situ hybridization analyses showed that OsGATA6 was specifically localized in superficial cells of the panicle primordium. Overexpression lines show decreased expression of RFT1 and Hd3a, which promote heading. OsMFT1, which delays heading date and increases grain number, was down-regulated in amiRNA lines. Further analyses showed that OsGATA6 could bind to the promoter of OsMFT1 and induce its expression, thereby regulating heading date and panicle development. Overexpression of OsGATA6 in Arabidopsis resulted in repressed expression of AtFT and late flowering, suggesting that its function is similar. Taken together, we have identified a new GATA regulator that influences rice heading date and grain number, which potentially increases rice yield.