Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D293-D303, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37889053

RESUMEN

Gene regulatory networks (GRNs) are interpretable graph models encompassing the regulatory interactions between transcription factors (TFs) and their downstream target genes. Making sense of the topology and dynamics of GRNs is fundamental to interpreting the mechanisms of disease etiology and translating corresponding findings into novel therapies. Recent advances in single-cell multi-omics techniques have prompted the computational inference of GRNs from single-cell transcriptomic and epigenomic data at an unprecedented resolution. Here, we present scGRN (https://bio.liclab.net/scGRN/), a comprehensive single-cell multi-omics gene regulatory network platform of human and mouse. The current version of scGRN catalogs 237 051 cell type-specific GRNs (62 999 692 TF-target gene pairs), covering 160 tissues/cell lines and 1324 single-cell samples. scGRN is the first resource documenting large-scale cell type-specific GRN information of diverse human and mouse conditions inferred from single-cell multi-omics data. We have implemented multiple online tools for effective GRN analysis, including differential TF-target network analysis, TF enrichment analysis, and pathway downstream analysis. We also provided details about TF binding to promoters, super-enhancers and typical enhancers of target genes in GRNs. Taken together, scGRN is an integrative and useful platform for searching, browsing, analyzing, visualizing and downloading GRNs of interest, enabling insight into the differences in regulatory mechanisms across diverse conditions.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Análisis de la Célula Individual , Factores de Transcripción , Animales , Humanos , Ratones , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
2.
Nucleic Acids Res ; 52(D1): D81-D91, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37889077

RESUMEN

Enhancer RNAs (eRNAs) transcribed from distal active enhancers serve as key regulators in gene transcriptional regulation. The accumulation of eRNAs from multiple sequencing assays has led to an urgent need to comprehensively collect and process these data to illustrate the regulatory landscape of eRNAs. To address this need, we developed the eRNAbase (http://bio.liclab.net/eRNAbase/index.php) to store the massive available resources of human and mouse eRNAs and provide comprehensive annotation and analyses for eRNAs. The current version of eRNAbase cataloged 10 399 928 eRNAs from 1012 samples, including 858 human samples and 154 mouse samples. These eRNAs were first identified and uniformly processed from 14 eRNA-related experiment types manually collected from GEO/SRA and ENCODE. Importantly, the eRNAbase provides detailed and abundant (epi)genetic annotations in eRNA regions, such as super enhancers, enhancers, common single nucleotide polymorphisms, expression quantitative trait loci, transcription factor binding sites, CRISPR/Cas9 target sites, DNase I hypersensitivity sites, chromatin accessibility regions, methylation sites, chromatin interactions regions, topologically associating domains and RNA spatial interactions. Furthermore, the eRNAbase provides users with three novel analyses including eRNA-mediated pathway regulatory analysis, eRNA-based variation interpretation analysis and eRNA-mediated TF-target gene analysis. Hence, eRNAbase is a powerful platform to query, browse and visualize regulatory cues associated with eRNAs.


Asunto(s)
Bases de Datos Genéticas , ARN Potenciadores , Transcripción Genética , Animales , Humanos , Ratones , Cromatina/genética , Regulación de la Expresión Génica
3.
Nucleic Acids Res ; 52(D1): D183-D193, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37956336

RESUMEN

Transcription factors (TFs), transcription co-factors (TcoFs) and their target genes perform essential functions in diseases and biological processes. KnockTF 2.0 (http://www.licpathway.net/KnockTF/index.html) aims to provide comprehensive gene expression profile datasets before/after T(co)F knockdown/knockout across multiple tissue/cell types of different species. Compared with KnockTF 1.0, KnockTF 2.0 has the following improvements: (i) Newly added T(co)F knockdown/knockout datasets in mice, Arabidopsis thaliana and Zea mays and also an expanded scale of datasets in humans. Currently, KnockTF 2.0 stores 1468 manually curated RNA-seq and microarray datasets associated with 612 TFs and 172 TcoFs disrupted by different knockdown/knockout techniques, which are 2.5 times larger than those of KnockTF 1.0. (ii) Newly added (epi)genetic annotations for T(co)F target genes in humans and mice, such as super-enhancers, common SNPs, methylation sites and chromatin interactions. (iii) Newly embedded and updated search and analysis tools, including T(co)F Enrichment (GSEA), Pathway Downstream Analysis and Search by Target Gene (BLAST). KnockTF 2.0 is a comprehensive update of KnockTF 1.0, which provides more T(co)F knockdown/knockout datasets and (epi)genetic annotations across multiple species than KnockTF 1.0. KnockTF 2.0 facilitates not only the identification of functional T(co)Fs and target genes but also the investigation of their roles in the physiological and pathological processes.


Asunto(s)
Bases de Datos Genéticas , Factores de Transcripción , Transcriptoma , Animales , Humanos , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Internet , Marcación de Gen , Arabidopsis , Zea mays
4.
Nucleic Acids Res ; 52(D1): D919-D928, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37986229

RESUMEN

Long non-coding RNAs (lncRNAs) possess a wide range of biological functions, and research has demonstrated their significance in regulating major biological processes such as development, differentiation, and immune response. The accelerating accumulation of lncRNA research has greatly expanded our understanding of lncRNA functions. Here, we introduce LncSEA 2.0 (http://bio.liclab.net/LncSEA/index.php), aiming to provide a more comprehensive set of functional lncRNAs and enhanced enrichment analysis capabilities. Compared with LncSEA 1.0, we have made the following improvements: (i) We updated the lncRNA sets for 11 categories and extremely expanded the lncRNA scopes for each set. (ii) We newly introduced 15 functional lncRNA categories from multiple resources. This update not only included a significant amount of downstream regulatory data for lncRNAs, but also covered numerous epigenetic regulatory data sets, including lncRNA-related transcription co-factor binding, chromatin regulator binding, and chromatin interaction data. (iii) We incorporated two new lncRNA set enrichment analysis functions based on GSEA and GSVA. (iv) We adopted the snakemake analysis pipeline to track data processing and analysis. In summary, LncSEA 2.0 offers a more comprehensive collection of lncRNA sets and a greater variety of enrichment analysis modules, assisting researchers in a more comprehensive study of the functional mechanisms of lncRNAs.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN Largo no Codificante , Bases de Datos de Ácidos Nucleicos/normas , ARN Largo no Codificante/genética , Análisis de Datos
5.
Nucleic Acids Res ; 51(D1): D88-D100, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36318256

RESUMEN

Chromatin regulators (CRs) regulate epigenetic patterns on a partial or global scale, playing a critical role in affecting multi-target gene expression. As chromatin immunoprecipitation sequencing (ChIP-seq) data associated with CRs are rapidly accumulating, a comprehensive resource of CRs needs to be built urgently for collecting, integrating, and processing these data, which can provide abundant annotated information on CR upstream and downstream regulatory analyses as well as CR-related analysis functions. This study established an integrative CR resource, named CRdb (http://cr.liclab.net/crdb/), with the aim of curating a large number of available resources for CRs and providing extensive annotations and analyses of CRs to help biological researchers clarify the regulation mechanism and function of CRs. The CRdb database comprised a total of 647 CRs and 2,591 ChIP-seq samples from more than 300 human tissues and cell types. These samples have been manually curated from NCBI GEO/SRA and ENCODE. Importantly, CRdb provided the abundant and detailed genetic annotations in CR-binding regions based on ChIP-seq. Furthermore, CRdb supported various functional annotations and upstream regulatory information on CRs. In particular, it embedded four types of CR regulatory analyses: CR gene set enrichment, CR-binding genomic region annotation, CR-TF co-occupancy analysis, and CR regulatory axis analysis. CRdb is a useful and powerful resource that can help in exploring the potential functions of CRs and their regulatory mechanism in diseases and biological processes.


Asunto(s)
Cromatina , Bases de Datos Genéticas , Genómica , Humanos , Cromatina/genética , Bases de Datos Factuales , Genoma , Anotación de Secuencia Molecular
6.
Nucleic Acids Res ; 51(D1): D280-D290, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36318264

RESUMEN

Super-enhancers (SEs) are cell-specific DNA cis-regulatory elements that can supervise the transcriptional regulation processes of downstream genes. SEdb 2.0 (http://www.licpathway.net/sedb) aims to provide a comprehensive SE resource and annotate their potential roles in gene transcriptions. Compared with SEdb 1.0, we have made the following improvements: (i) Newly added the mouse SEs and expanded the scale of human SEs. SEdb 2.0 contained 1 167 518 SEs from 1739 human H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) samples and 550 226 SEs from 931 mouse H3K27ac ChIP-seq samples, which was five times that of SEdb 1.0. (ii) Newly added transcription factor binding sites (TFBSs) in SEs identified by TF motifs and TF ChIP-seq data. (iii) Added comprehensive (epi)genetic annotations of SEs, including chromatin accessibility regions, methylation sites, chromatin interaction regions and topologically associating domains (TADs). (iv) Newly embedded and updated search and analysis tools, including 'Search SE by TF-based', 'Differential-Overlapping-SE analysis' and 'SE-based TF-Gene analysis'. (v) Newly provided quality control (QC) metrics for ChIP-seq processing. In summary, SEdb 2.0 is a comprehensive update of SEdb 1.0, which curates more SEs and annotation information than SEdb 1.0. SEdb 2.0 provides a friendly platform for researchers to more comprehensively clarify the important role of SEs in the biological process.


Asunto(s)
Bases de Datos Genéticas , Elementos de Facilitación Genéticos , Animales , Humanos , Ratones , Cromatina/genética , Regulación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35959979

RESUMEN

The rapid development of genomic high-throughput sequencing has identified a large number of DNA regulatory elements with abundant epigenetics markers, which promotes the rapid accumulation of functional genomic region data. The comprehensively understanding and research of human functional genomic regions is still a relatively urgent work at present. However, the existing analysis tools lack extensive annotation and enrichment analytical abilities for these regions. Here, we designed a novel software, Genomic Region sets Enrichment Analysis Platform (GREAP), which provides comprehensive region annotation and enrichment analysis capabilities. Currently, GREAP supports 85 370 genomic region reference sets, which cover 634 681 107 regions across 11 different data types, including super enhancers, transcription factors, accessible chromatins, etc. GREAP provides widespread annotation and enrichment analysis of genomic regions. To reflect the significance of enrichment analysis, we used the hypergeometric test and also provided a Locus Overlap Analysis. In summary, GREAP is a powerful platform that provides many types of genomic region sets for users and supports genomic region annotations and enrichment analyses. In addition, we developed a customizable genome browser containing >400 000 000 customizable tracks for visualization. The platform is freely available at http://www.liclab.net/Greap/view/index.


Asunto(s)
Genómica , Programas Informáticos , Cromatina , Genoma Humano , Humanos , Anotación de Secuencia Molecular , Factores de Transcripción
8.
Acta Derm Venereol ; 104: adv11917, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270257

RESUMEN

Epidermolysis bullosa acquisita (EBA) rarely develops in childhood. This study retrospectively recruited paediatric patients with EBA (age ≤ 16 years), diagnosed by clinical and histopathological features and results of immunofluorescence, immunoblotting and enzyme-linked immunosorbent assay (ELISA), and reviews their clinical manifestations, histopathology, immunological features, and responses to various treatments. All 7 included patients presented with inflammatory EBA. Among them, 3 had a bullous pemphigoid-like phenotype. Pathologically, in addition to dermal-epidermal blistering, in all patients, the distribution of neutrophils was superficial perivascular or interstitial, or in the dermal papilla. Mixed neutrophils and eosinophils were detected in 2 of the 3 patients with bullous pemphigoid-like phenotypes. In addition to treatment with glucocorticoids, dapsone was administered in 4 patients, while thalidomide and sulfasalazine were administered in 1 patient. All patients responded to the these therapies. Relapse was mainly due to reduction and cessation of glucocorticoids. In conclusion, EBA in childhood may be unique, and thus distinct from its adult counterpart. Specific treatment and follow-up protocols are required for therapy of this rare autoimmune skin disease in children.


Asunto(s)
Enfermedades Autoinmunes , Epidermólisis Ampollosa Adquirida , Penfigoide Ampolloso , Adulto , Humanos , Niño , Adolescente , Epidermólisis Ampollosa Adquirida/diagnóstico , Epidermólisis Ampollosa Adquirida/tratamiento farmacológico , Estudios Retrospectivos , Dapsona/uso terapéutico , Glucocorticoides/uso terapéutico
9.
BMC Ophthalmol ; 24(1): 172, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627651

RESUMEN

PURPOSE: To assess the efficacy and safety of various intraocular lenses (IOLs), including standard monofocal, bifocal, trifocal, extended depth of focus (EDOF), and enhanced monofocal IOLs, post-cataract surgery through a network meta-analysis. METHODS: A systematic search of PubMed, Cochrane Library, and Web of Science was conducted to identify relevant studies from the past 5 years. Parameters such as binocular visual acuities, spectacle independence, contrast sensitivity (CS), and optical quality were used to evaluate efficacy and safety. Data from the selected studies were analyzed using Review Manager 5.4 and STATA 17.0 software. RESULTS: Twenty-eight Randomized Controlled Trials (RCTs) comprising 2465 subjects were included. Trifocal IOLs exhibited superior uncorrected near visual acuity (UNVA) compared to monofocal IOLs (MD: -0.35; 95% CI: -0.48, -0.22). Both trifocal (AcrySof IQ PanOptix IOLs group MD: -0.13; 95% CI: -0.21, -0.06) and EDOF IOLs (MD: -0.13; 95% CI: -0.17, -0.09) showed better uncorrected intermediate visual acuity (UIVA) than monofocal IOLs. Trifocal IOLs ranked highest in spectacle independence at various distances (AT LISAtri 839MP group: SUCRA 97.5% for distance, 80.7% for intermediate; AcrySof IQ PanOptix group: SUCRA 83.0% for near). CONCLUSIONS: For cataract patients who want to treat presbyopia, trifocal IOLs demonstrated better visual acuity and spectacle independence at near distances. Different types of trifocal IOL characteristics differ. EDOF and enhanced monofocal IOLs have improved visual quality at intermediate distances.Therefore, It is very important to select the appropriate IOLs based on the lens characteristics and patient needs.


Asunto(s)
Extracción de Catarata , Lentes Intraoculares , Presbiopía , Agudeza Visual , Humanos , Presbiopía/cirugía , Presbiopía/fisiopatología , Agudeza Visual/fisiología , Extracción de Catarata/métodos , Sensibilidad de Contraste/fisiología , Implantación de Lentes Intraoculares/métodos , Diseño de Prótesis , Visión Binocular/fisiología , Refracción Ocular/fisiología
10.
Nucleic Acids Res ; 50(D1): D391-D401, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718747

RESUMEN

Transcription co-factors (TcoFs) play crucial roles in gene expression regulation by communicating regulatory cues from enhancers to promoters. With the rapid accumulation of TcoF associated chromatin immunoprecipitation sequencing (ChIP-seq) data, the comprehensive collection and integrative analyses of these data are urgently required. Here, we developed the TcoFBase database (http://tcof.liclab.net/TcoFbase), which aimed to document a large number of available resources for mammalian TcoFs and provided annotations and enrichment analyses of TcoFs. TcoFBase curated 2322 TcoFs and 6759 TcoFs associated ChIP-seq data from over 500 tissues/cell types in human and mouse. Importantly, TcoFBase provided detailed and abundant (epi) genetic annotations of ChIP-seq based TcoF binding regions. Furthermore, TcoFBase supported regulatory annotation information and various functional annotations for TcoFs. Meanwhile, TcoFBase embedded five types of TcoF regulatory analyses for users, including TcoF gene set enrichment, TcoF binding genomic region annotation, TcoF regulatory network analysis, TcoF-TF co-occupancy analysis and TcoF regulatory axis analysis. TcoFBase was designed to be a useful resource that will help reveal the potential biological effects of TcoFs and elucidate TcoF-related regulatory mechanisms.


Asunto(s)
Bases de Datos Genéticas , Redes Reguladoras de Genes , Programas Informáticos , Factores de Transcripción/genética , Transcripción Genética , Animales , Cromatina/química , Cromatina/metabolismo , Conjuntos de Datos como Asunto , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
11.
Asia Pac J Clin Nutr ; 33(4): 539-544, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39209363

RESUMEN

BACKGROUND AND OBJECTIVES: Women are more prone to iron deficiency (ID) anemia when pregnant. The diagnostic use of mean reticulocyte volume (MRV) in identifying ID anemia during pregnancy has not been thoroughly investigated. The objective of this study is to evaluate the effectiveness of MRV in diagnosing ID in pregnant women. METHODS AND STUDY DESIGN: Firstly, MRV of 20 healthy female volunteers (healthy group) was measured on specific days for one month. Subsequently, clinical data from 724 pregnant women were thoroughly examined. These women were divided into two groups: 282 with ID (research group) and 442 without ID (control group). Parameters such as MRV, reticulocyte hemoglobin equivalent (RHE), red blood cell volume distribution width-standard deviation (RDW-SD), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), reticulocyte count (RET), MRV/MCV ratio, and serum ferritin (SF) were analyzed and compared. RESULTS: MRV remained consistent over a period of one month for 20 healthy individuals. In addition, there were significant differences in MRV, RHE, RDW-SD, MCV, MCH, MCHC, HCT, RET, and MRV/MCV between the research group and control group. The receiver operating characteristic (ROC) analysis showed that the areas under the curve (AUCs) for these measures were as follow: 0.840, 0.837, 0.676, 0.654, 0.639, 0.602, 0.571, 0.550, and 0.816, respectively. Ultimately, there was a substantial disparity in MRV prior to and following therapy with oral iron treatments. CONCLUSIONS: In healthy women, MRV remains stable and is a reliable ID marker, which can be used to assess oral iron treatment effectiveness during pregnancy.


Asunto(s)
Anemia Ferropénica , Reticulocitos , Humanos , Femenino , Embarazo , Anemia Ferropénica/diagnóstico , Anemia Ferropénica/sangre , Adulto , Índices de Eritrocitos , Recuento de Reticulocitos , Adulto Joven , Complicaciones Hematológicas del Embarazo/sangre , Complicaciones Hematológicas del Embarazo/diagnóstico
12.
Biochem Biophys Res Commun ; 682: 199-206, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37826943

RESUMEN

Although accumulating evidence has revealed that autophagy inhibition contributes to the development of pathological cardiac hypertrophy, the mechanisms leading to declined autophagy activity in the hypertrophic heart remain to be elucidated. Exosomes are known to be important mediators of intercellular communication, and the involvement of exosomes in cardiovascular abnormities has attracted increasing attentions. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. Here, we investigated the potential role of CFs-derived exosomes in regulating cardiomyocyte hypertrophy and autophagy. Exosomes from rat CFs treated with angiotensin II (Ang II-CFs-exosomes) were collected and characterized. Our experiments showed that these exosomes could induce hypertrophic responses and impair autophagy activity in primary neonatal rat cardiomyocytes (NRCMs). Ang II-CFs-exosomes blocked the autophagic flux of NRCMs via inhibiting the formation of autolysosomes. Moreover, the pro-hypertrophic effects and autophagy inhibition induced by Ang II-CFs-exosomes was validated in mice receiving injection of the exosomes. These findings highlight a novel role of Ang II-CFs-exosomes in suppressing cardiomyocyte autophagy, which may help to better understand the pathogenesis of cardiac hypertrophy.


Asunto(s)
Exosomas , Miocitos Cardíacos , Ratas , Ratones , Animales , Miocitos Cardíacos/metabolismo , Angiotensina II/metabolismo , Exosomas/metabolismo , Cardiomegalia/metabolismo , Autofagia , Fibroblastos/metabolismo
13.
Biochem Biophys Res Commun ; 661: 64-74, 2023 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-37087800

RESUMEN

Myocardial infarction (MI) contributes to an increased risk of incident heart failure and sudden death, but there is still a lack of effective treatment in clinic. Recently, growing evidence has indicated that abnormal expression of microRNAs (miRNAs) plays a crucial role in cardiovascular diseases. In this research, the involvement of miRNA-214-3p in MI was explored. A mouse model of MI was established by ligation of the left anterior descending coronary artery, and primary cultures of neonatal rat cardiomyocytes (NRCMs) were submitted to hypoxic treatment to stimulate cellular injury in vitro. Our results showed that miR-214-3p level was significantly upregulated in the infarcted region of mouse hearts and in NRCMs exposed to hypoxia, accompanying with an obvious elevation of ferroptosis. Inhibition of miR-214-3p by antagomir injection improved cardiac function, decreased infarct size, and attenuated iron accumulation and oxidant stress in myocardial tissues. MiR-214-3p could also promote ferroptosis and cellular impairments in NRCMs, while miR-214-3p inhibitor effectively protected cells from hypoxia. Furthermore, dual luciferase reporter gene assay revealed that malic enzyme 2 (ME2) is a direct target of miR-214-3p. In cardiomyocytes, overexpression of ME2 ameliorated the detrimental effects and excessive ferroptosis induced by miR-214-3p mimic, whereas ME2 depletion compromised the protective role of miR-214-3p inhibitor against hypoxic injury and ferroptosis. These findings suggest that miR-214-3p contributes to enhanced ferroptosis during MI at least partially via suppressing ME2. Inhibition of miR-214-3p may be a new approach for tackling MI.


Asunto(s)
Ferroptosis , MicroARNs , Infarto del Miocardio , Animales , Ratones , Ratas , Apoptosis , Hipoxia/metabolismo , MicroARNs/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
14.
BMC Plant Biol ; 23(1): 330, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344795

RESUMEN

BACKGROUND: Flooding is among the most severe abiotic stresses in plant growth and development. The mechanism of submergence tolerance of cotton in response to submergence stress is unknown. RESULTS: The transcriptome results showed that a total of 6,893 differentially expressed genes (DEGs) were discovered under submergence stress. Gene Ontology (GO) enrichment analysis showed that DEGs were involved in various stress or stimulus responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs related to plant hormone signal transduction, starch and sucrose metabolism, glycolysis and the biosynthesis of secondary metabolites were regulated by submergence stress. Eight DEGs related to ethylene signaling and 3 ethylene synthesis genes were identified in the hormone signal transduction. For respiratory metabolism, alcohol dehydrogenase (ADH, GH_A02G0728) and pyruvate decarboxylase (PDC, GH_D09G1778) were significantly upregulated but 6-phosphofructokinase (PFK, GH_D05G0280), phosphoglycerate kinase (PGK, GH_A01G0945 and GH_D01G0967) and sucrose synthase genes (SUS, GH_A06G0873 and GH_D06G0851) were significantly downregulated in the submergence treatment. Terpene biosynthetic pathway-related genes in the secondary metabolites were regulated in submergence stress. CONCLUSIONS: Regulation of terpene biosynthesis by respiratory metabolism may play a role in enhancing the tolerance of cotton to submergence under flooding. Our findings showed that the mevalonate pathway, which occurs in the cytoplasm of the terpenoid backbone biosynthesis pathway (ko00900), may be the main response to submergence stress.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Metabolismo de los Hidratos de Carbono/genética , Estrés Fisiológico/genética , Etilenos , Regulación de la Expresión Génica de las Plantas
15.
BMC Plant Biol ; 23(1): 124, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869319

RESUMEN

BACKGROUND: 2-oxoglutarate-dependent dioxygenase (2ODD) is the second largest family of oxidases involved in various oxygenation/hydroxylation reactions in plants. Many members in the family regulate gene transcription, nucleic acid modification/repair and secondary metabolic synthesis. The 2ODD family genes also function in the formation of abundant flavonoids during anthocyanin synthesis, thereby modulating plant development and response to diverse stresses. RESULTS: Totally, 379, 336, 205, and 204 2ODD genes were identified in G. barbadense (Gb), G. hirsutum (Gh), G. arboreum (Ga), and G. raimondii (Gb), respectively. The 336 2ODDs in G. hirsutum were divided into 15 subfamilies according to their putative functions. The structural features and functions of the 2ODD members in the same subfamily were similar and evolutionarily conserved. Tandem duplications and segmental duplications served essential roles in the large-scale expansion of the cotton 2ODD family. Ka/Ks values for most of the gene pairs were less than 1, indicating that 2ODD genes undergo strong purifying selection during evolution. Gh2ODDs might act in cotton responses to different abiotic stresses. GhLDOX3 and GhLDOX7, two members of the GhLDOX subfamily from Gh2ODDs, were significantly down-regulated in transcription under alkaline stress. Moreover, the expression of GhLDOX3 in leaves was significantly higher than that in other tissues. These results will provide valuable information for further understanding the evolution mechanisms and functions of the cotton 2ODD genes in the future. CONCLUSIONS: Genome-wide identification, structure, and evolution and expression analysis of 2ODD genes in Gossypium were carried out. The 2ODDs were highly conserved during evolutionary. Most Gh2ODDs were involved in the regulation of cotton responses to multiple abiotic stresses including salt, drought, hot, cold and alkali.


Asunto(s)
Álcalis , Gossypium , Sequías , Flavonoides , Hidroxilación
16.
BMC Plant Biol ; 23(1): 245, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161359

RESUMEN

BACKGROUND: Cotton is an important industrial crop and a pioneer crop for saline-alkali land restoration. However, the molecular mechanism underlying the cotton response to salt is not completely understood. METHODS: Here, we used metabolome data and transcriptome data to analyze the salt tolerance regulatory network of cotton and metabolic biomarkers. RESULTS: In this study, cotton was stressed at 400 m M NaCl for 0 h, 3 h, 24 h and 48 h. NaCl interfered with cotton gene expression, altered metabolite contents and affected plant growth. Metabolome analysis showed that NaCl stress increased the contents of amino acids, sugars and ABA, decreased the amount of vitamin and terpenoids. K-means cluster analysis of differentially expressed genes showed that the continuously up-regulated genes were mainly enriched in metabolic pathways such as flavonoid biosynthesis and amino acid biosynthesis. CONCLUSION: The four metabolites of cysteine (Cys), ABA(Abscisic acid), turanose, and isopentenyladenine-7-N-glucoside (IP7G) were consistently up-regulated under salt stress, which may indicate that they are potential candidates for cotton under salt stress biomarkers. Combined transcriptome and metabolome analysis revealed accumulation of cysteine, ABA, isopentenyladenine-7-N-glucoside and turanose were important for salt tolerance in cotton mechanism. These results will provide some metabolic insights and key metabolite biomarkers for salt stress tolerance, which may help to understanding of the metabolite response to salt stress in cotton and develop a foundation for cotton to grow better in saline soil.


Asunto(s)
Tolerancia a la Sal , Transcriptoma , Tolerancia a la Sal/genética , Cisteína , Cloruro de Sodio/farmacología , Gossypium/genética , Biomarcadores
17.
Brief Bioinform ; 22(2): 1929-1939, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32047897

RESUMEN

Long noncoding RNAs (lncRNAs) have been proven to play important roles in transcriptional processes and biological functions. With the increasing study of human diseases and biological processes, information in human H3K27ac ChIP-seq, ATAC-seq and DNase-seq datasets is accumulating rapidly, resulting in an urgent need to collect and process data to identify transcriptional regulatory regions of lncRNAs. We therefore developed a comprehensive database for human regulatory information of lncRNAs (TRlnc, http://bio.licpathway.net/TRlnc), which aimed to collect available resources of transcriptional regulatory regions of lncRNAs and to annotate and illustrate their potential roles in the regulation of lncRNAs in a cell type-specific manner. The current version of TRlnc contains 8 683 028 typical enhancers/super-enhancers and 32 348 244 chromatin accessibility regions associated with 91 906 human lncRNAs. These regions are identified from over 900 human H3K27ac ChIP-seq, ATAC-seq and DNase-seq samples. Furthermore, TRlnc provides the detailed genetic and epigenetic annotation information within transcriptional regulatory regions (promoter, enhancer/super-enhancer and chromatin accessibility regions) of lncRNAs, including common SNPs, risk SNPs, eQTLs, linkage disequilibrium SNPs, transcription factors, methylation sites, histone modifications and 3D chromatin interactions. It is anticipated that the use of TRlnc will help users to gain in-depth and useful insights into the transcriptional regulatory mechanisms of lncRNAs.


Asunto(s)
Bases de Datos Genéticas , ARN Largo no Codificante/genética , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Humanos , Desequilibrio de Ligamiento , Metilación , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo
18.
Clin Sci (Lond) ; 137(10): 823-841, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37184210

RESUMEN

The present study aims to investigate the role of AKT2 in the pathogenesis of hepatic and cardiac lipotoxicity induced by lipid overload-induced obesity and identify its downstream targets. WT and Akt2 KO mice were fed either normal diet, or high-fat diet (HFD) to induce obesity model in vivo. Human hepatic cell line (L02 cells) and neonatal rat cardiomyocytes (NRCMs) were used as in vitro models. We observed that during HFD-induced obesity, Akt2 loss-of-function mitigated lipid accumulation and oxidative stress in the liver and heart tissue. Mechanistically, down-regulation of Akt2 promotes SIRT6 expression in L02 cells and NRCMs, the latter deacetylates SOD2, which promotes SOD2 activity and therefore alleviates oxidative stress-induced injury of hepatocytes and cardiomyocytes. Furthermore, we also proved that AKT2 inhibitor protects hepatocytes and cardiomyocytes from HFD-induced oxidative stress. Therefore, our work prove that AKT2 plays an important role in the regulation of obesity-induced lipid metabolic disorder in the liver and heart. Our study also indicates AKT2 inhibitor as a potential therapy for obesity-induced hepatic and cardiac injury.


Asunto(s)
Dieta Alta en Grasa , Sirtuinas , Humanos , Animales , Ratones , Ratas , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Estrés Oxidativo , Obesidad/metabolismo , Miocitos Cardíacos/metabolismo , Sirtuinas/metabolismo , Lípidos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo
19.
Cell Biol Toxicol ; 39(4): 1489-1507, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798905

RESUMEN

The sirtuin 6 (SIRT6) participates in regulating glucose and lipid homeostasis. However, the function of SIRT6 in the process of cardiac pathogenesis caused by obesity-associated lipotoxicity remains to be unveiled. This study was designed to elucidate the role of SIRT6 in the pathogenesis of cardiac injury due to nutrition overload-induced obesity and explore the downstream signaling pathways affecting oxidative stress in the heart. In this study, we used Sirt6 cardiac-specific knockout murine models treated with a high-fat diet (HFD) feeding to explore the function and mechanism of SIRT6 in the heart tissue during HFD-induced obesity. We also took advantage of neonatal cardiomyocytes to study the role and downstream molecules of SIRT6 during HFD-induced injury in vitro, in which intracellular oxidative stress and mitochondrial content were assessed. We observed that during HFD-induced obesity, Sirt6 loss-of-function aggravated cardiac injury including left ventricular hypertrophy and lipid accumulation. Our results evidenced that upon increased fatty acid uptake, SIRT6 positively regulated the expression of endonuclease G (ENDOG), which is a mitochondrial-resident molecule that plays an important role in mitochondrial biogenesis and redox homeostasis. Our results also showed that SIRT6 positively regulated superoxide dismutase 2 (SOD2) expression post-transcriptionally via ENDOG. Our study gives a new sight into SIRT6 beneficial role in mitochondrial biogenesis of cardiomyocytes. Our data also show that SIRT6 is required to reduce intracellular oxidative stress in the heart triggered by high-fat diet-induced obesity, involving the control of ENDOG/SOD2.


Asunto(s)
Estrés Oxidativo , Sirtuinas , Ratones , Animales , Estrés Oxidativo/fisiología , Sirtuinas/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Lípidos
20.
Nucleic Acids Res ; 49(D1): D969-D980, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33045741

RESUMEN

Long non-coding RNAs (lncRNAs) have been proven to play important roles in transcriptional processes and various biological functions. Establishing a comprehensive collection of human lncRNA sets is urgent work at present. Using reference lncRNA sets, enrichment analyses will be useful for analyzing lncRNA lists of interest submitted by users. Therefore, we developed a human lncRNA sets database, called LncSEA, which aimed to document a large number of available resources for human lncRNA sets and provide annotation and enrichment analyses for lncRNAs. LncSEA supports >40 000 lncRNA reference sets across 18 categories and 66 sub-categories, and covers over 50 000 lncRNAs. We not only collected lncRNA sets based on downstream regulatory data sources, but also identified a large number of lncRNA sets regulated by upstream transcription factors (TFs) and DNA regulatory elements by integrating TF ChIP-seq, DNase-seq, ATAC-seq and H3K27ac ChIP-seq data. Importantly, LncSEA provides annotation and enrichment analyses of lncRNA sets associated with upstream regulators and downstream targets. In summary, LncSEA is a powerful platform that provides a variety of types of lncRNA sets for users, and supports lncRNA annotations and enrichment analyses. The LncSEA database is freely accessible at http://bio.liclab.net/LncSEA/index.php.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Regulación de la Expresión Génica , ARN Largo no Codificante/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Minería de Datos/métodos , Humanos , Internet , Anotación de Secuencia Molecular/métodos , Análisis de Secuencia de ARN/métodos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA