Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(19): 2901-2912, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37440454

RESUMEN

Telomere biology disorders (TBDs) are characterized by short telomeres, premature aging, bone marrow failure and cancer predisposition. Germline mutations in NHP2, encoding for one component of the telomerase cofactor H/ACA RNA binding complex together with Dyskerin, NOP10 and GAR1, have been previously reported in rare cases of TBDs. Here, we report two novel NHP2 variants (NHP2-A39T and NHP2-T44M) identified in a compound heterozygous patient affected by premature aging, bone marrow failure/myelodysplastic syndrome and gastric cancer. Although still able to support cell viability, both variants reduce the levels of hTR, the telomerase RNA component, and telomerase activity, expanding the panel of NHP2 pathological variants. Furthermore, both variants fail to be incorporated in the H/ACA RNA binding complex when in competition with wild-type endogenous NHP2, and the lack of incorporation causes their drastic proteasomal degradation. By RoseTTAFold prediction followed by molecular dynamics simulations, we reveal a dramatic distortion of residues 33-41, which normally position on top of the NHP2 core, as the main defect of NHP2-A39T, and high flexibility and the misplacement of the N-terminal region (residues 1-24) in NHP2-T44M and, to a lower degree, in NHP2-A39T. Because deletion of amino acids 2-24 causes a reduction in NHP2 levels only in the presence of wild-type NHP2, while deletion of amino acids 2-38 completely disrupts NHP2 stability, we propose that the two variants are mis-incorporated into the H/ACA binding complex due to the altered dynamics of the first 23 amino acids and/or the distortion of the residues 25-41 loop.


Asunto(s)
Envejecimiento Prematuro , Telomerasa , Humanos , Telomerasa/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , ARN/genética , ARN/metabolismo , Trastornos de Fallo de la Médula Ósea , Estabilidad Proteica , Telómero/metabolismo , Proteínas Nucleares/genética
2.
Cancer ; 130(14): 2472-2481, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38470375

RESUMEN

BACKGROUND: Both venetoclax plus a hypomethylating agent (VEN/HMA) and cytarabine, aclarubicin, and granulocyte colony-stimulating factor (CAG) are low-intensity regimens for older patients with acute myeloid leukemia (AML) that show good efficacy and safety. It is unknown how VEN/HMA compares with the CAG regimen for the treatment of newly diagnosed AML. METHODS: The outcomes of patients with newly diagnosed AML treated with VEN/HMA were compared with those of patients treated with a CAG-based regimen. Propensity score matching between these two cohorts at a 1:1 ratio was performed according to age at diagnosis, sex, Eastern Cooperative Oncology Group performance status, state of fitness, and European LeukemiaNet (ELN) 2022 risk stratification to minimize bias. RESULTS: A total of 84 of 96 patients in the VEN/HMA cohort were matched with 84 of 147 patients in the CAG cohort. VEN/HMA resulted in a better response than the CAG-based regimens, as indicated by a higher composite complete remission (CRc) rate (82.1% vs. 60.7%; p = .002) and minimal residual disease negativity rate (88.2% vs. 68.2%; p = .009). In patients with an ELN adverse risk, VEN/HMA was associated with a higher CRc rate compared to CAG (80.5% vs. 58.3%; p = .006). VEN/HMA was associated with longer event-free survival (EFS) (median EFS, not reached vs. 4.5 months; p = .0004), whereas overall survival (OS) was comparable between the two cohorts (median OS, not reached vs. 18 months; p = .078). CONCLUSIONS: The VEN/HMA regimen may result in a better response than CAG-based treatment in older patients with newly diagnosed AML.


Asunto(s)
Aclarubicina , Protocolos de Quimioterapia Combinada Antineoplásica , Compuestos Bicíclicos Heterocíclicos con Puentes , Citarabina , Factor Estimulante de Colonias de Granulocitos , Leucemia Mieloide Aguda , Puntaje de Propensión , Sulfonamidas , Humanos , Femenino , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Anciano , Citarabina/administración & dosificación , Citarabina/uso terapéutico , Aclarubicina/administración & dosificación , Aclarubicina/uso terapéutico , Persona de Mediana Edad , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Sulfonamidas/administración & dosificación , Sulfonamidas/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Anciano de 80 o más Años
3.
Br J Haematol ; 204(6): 2429-2441, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38665119

RESUMEN

Primary immune thrombocytopenia (ITP) is linked to specific pathogenic mechanisms, yet its relationship with mitophagy and ferroptosis is poorly understood. This study aimed to identify new biomarkers and explore the role of mitophagy and ferroptosis in ITP pathogenesis. Techniques such as differential analysis, Mfuzz expression pattern clustering, machine learning, gene set enrichment analysis, single-cell RNA sequencing (scRNA-seq) and immune infiltration analysis were employed to investigate the molecular pathways of pivotal genes. Two-sample Mendelian randomization (TSMR) assessed the causal effects in ITP. Key genes identified in the training set included GABARAPL1, S100A8, LIN28A, and GDF9, which demonstrated diagnostic potential in validation sets. Functional analysis indicated these genes' involvement in ubiquitin phosphorylation, PPAR signalling pathway and T-cell differentiation. Immune infiltration analysis revealed increased macrophage presence in ITP, related to the critical genes. scRNA-seq indicated reduced GABARAPL1 expression in ITP bone marrow macrophages. TSMR linked S100A8 with ITP diagnosis, presenting an OR of 0.856 (95% CI = 0.736-0.997, p = 0.045). The study pinpointed four central genes, GABARAPL1, S100A8, LIN28A, and GDF9, tied to mitophagy and ferroptosis in ITP. It posits that diminished GABARAPL1 expression may disrupts ubiquitin phosphorylation and PPAR signalling, impairing mitophagy and inhibiting ferroptosis, leading to immune imbalance.


Asunto(s)
Ferroptosis , Mitofagia , Púrpura Trombocitopénica Idiopática , Humanos , Ferroptosis/genética , Púrpura Trombocitopénica Idiopática/genética , Masculino , Femenino , Biomarcadores , Persona de Mediana Edad
4.
Hepatology ; 78(6): 1828-1842, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36804859

RESUMEN

BACKGROUND AIMS: SLC25A47 was initially identified as a mitochondrial HCC-downregulated carrier protein, but its physiological functions and transport substrates are unknown. We aimed to investigate the physiological role of SLC25A47 in hepatic metabolism. APPROACH RESULTS: In the treatment of hepatocytes with metformin, we found that metformin can transcriptionally activate the expression of Slc25a47 , which is required for AMP-activated protein kinase α (AMPKα) phosphorylation. Slc25a47 -deficient mice had increased hepatic lipid content, triglycerides, and cholesterol levels, and we found that Slc25a47 deficiency suppressed AMPKα phosphorylation and led to an increased accumulation of nuclear SREBPs, with elevated fatty acid and cholesterol biosynthetic activities. Conversely, when Slc25a47 was overexpressed in mouse liver, AMPKα was activated and resulted in the inhibition of lipogenesis. Moreover, using a diethylnitrosamine-induced mouse HCC model, we found that the deletion of Slc25a47 promoted HCC tumorigenesis and development through the activated mammalian target of rapamycin cascade. Employing homology modeling of SLC25A47 and virtual screening of the human metabolome database, we demonstrated that NAD + was an endogenous substrate for SLC25A47, and the activity of NAD + -dependent sirtuin 3 declined in Slc25a47 -deficient mice, followed by inactivation of AMPKα. CONCLUSIONS: Our findings reveal that SLC25A47, a hepatocyte-specific mitochondrial NAD + transporter, is one of the pharmacological targets of metformin and regulates lipid homeostasis through AMPKα, and may serve as a potential drug target for treating NAFLD and HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Lípidos , NAD/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Metformina/farmacología , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Ácidos Grasos/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo
5.
J Nanobiotechnology ; 22(1): 41, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281957

RESUMEN

Malignancy is a major public health problem and among the leading lethal diseases worldwide. Although the current tumor treatment methods have therapeutic effect to a certain extent, they still have some shortcomings such as poor water solubility, short half-life, local and systemic toxicity. Therefore, how to deliver therapeutic agent so as to realize safe and effective anti-tumor therapy become a problem urgently to be solved in this field. As a medium of information exchange and material transport between cells, exosomes are considered to be a promising drug delivery carrier due to their nano-size, good biocompatibility, natural targeting, and easy modification. In this review, we summarize recent advances in the isolation, identification, drug loading, and modification of exosomes as drug carriers for tumor therapy alongside their application in tumor therapy. Basic knowledge of exosomes, such as their biogenesis, sources, and characterization methods, is also introduced herein. In addition, challenges related to the use of exosomes as drug delivery vehicles are discussed, along with future trends. This review provides a scientific basis for the application of exosome delivery systems in oncological therapy.


Asunto(s)
Exosomas , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/uso terapéutico , Neoplasias/tratamiento farmacológico
6.
J Nanobiotechnology ; 22(1): 335, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879519

RESUMEN

Manganese (Mn) is widely recognized owing to its low cost, non-toxic nature, and versatile oxidation states, leading to the emergence of various Mn-based nanomaterials with applications across diverse fields, particularly in tumor diagnosis and therapy. Systematic reviews specifically addressing the tumor diagnosis and therapy aspects of Mn-derived biomaterials are lacking. This review comprehensively explores the physicochemical characteristics and synthesis methods of Mn-derived biomaterials, emphasizing their role in tumor diagnostics, including magnetic resonance imaging, photoacoustic and photothermal imaging, ultrasound imaging, multimodal imaging, and biodetection. Moreover, the advantages of Mn-based materials in tumor treatment applications are discussed, including drug delivery, tumor microenvironment regulation, synergistic photothermal, photodynamic, and chemodynamic therapies, tumor immunotherapy, and imaging-guided therapy. The review concludes by providing insights into the current landscape and future directions for Mn-driven advancements in the field, serving as a comprehensive resource for researchers and clinicians.


Asunto(s)
Materiales Biocompatibles , Manganeso , Neoplasias , Microambiente Tumoral , Animales , Humanos , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos/métodos , Imagen por Resonancia Magnética/métodos , Manganeso/química , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
7.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791234

RESUMEN

As a physical mutagen, carbon ion beam (CIB) irradiation can induce high-frequency mutation, which is user-friendly and environment-friendly in plant breeding. In this study, we resequenced eight mutant lines which were screened out from the progeny of the CIB-irradiated dehulled rice seeds. Among these mutants, CIB induced 135,535 variations, which include single base substitutions (SBSs), and small insertion and deletion (InDels). SBSs are the most abundant mutation, and account for 88% of all variations. Single base conversion is the main type of SBS, and the average ratio of transition and transversion is 1.29, and more than half of the InDels are short-segmented mutation (1-2 bp). A total of 69.2% of the SBSs and InDels induced by CIBs occurred in intergenic regions on the genome. Surprisingly, the average mutation frequency in our study is 9.8 × 10-5/bp and much higher than that of the previous studies, which may result from the relatively high irradiation dosage and the dehulling of seeds for irradiation. By analyzing the mutation of every 1 Mb in the genome of each mutant strain, we found some unusual high-frequency (HF) mutation regions, where SBSs and InDels colocalized. This study revealed the mutation mechanism of dehulled rice seeds by CIB irradiation on the genome level, which will enrich our understanding of the mutation mechanism of CIB radiation and improve mutagenesis efficiency.


Asunto(s)
Genoma de Planta , Mutación , Oryza , Semillas , Oryza/genética , Oryza/efectos de la radiación , Semillas/genética , Semillas/efectos de la radiación , Carbono , Mutación INDEL , Iones Pesados
8.
J Biol Chem ; 298(9): 102314, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926709

RESUMEN

The zinc finger ubiquitin ligase RNF6 has been proposed as a potential therapeutic target in several cancers, but understanding its molecular mechanism of degradation has been elusive. In the present study, we find that RNF6 is degraded via auto-ubiquitination in a manner dependent on its Really Interesting New Gene (RING) domain. We determine that when the RING domain is deleted (ΔRING) or the core cysteine residues in the zinc finger are mutated (C632S/C635S), the WT protein, but not the ΔRING or mutant RNF6 protein, undergoes polyubiquitination. We also identify USP7 as a deubiquitinase of RNF6 by tandem mass spectrometry. We show that USP7 interacts with RNF6 and abolishes its K48-linked polyubiquitination, thereby preventing its degradation. In contrast, we found a USP7-specific inhibitor promotes RNF6 polyubiquitination, degradation, and cell death. Furthermore, we demonstrate the anti-leukemic drug Nilotinib and anti-myeloma drug Panobinostat (LBH589) induce RNF6 K48-linked polyubiquitination and degradation in both multiple myeloma (MM) and leukemia cells. In agreement with our hypothesis on the mode of RNF6 degradation, we show these drugs promote RNF6 auto-ubiquitination in an in vitro ubiquitination system without other E3 ligases. Consistently, reexpression of RNF6 ablates drug-induced MM and leukemia cell apoptosis. Therefore, our results reveal that RNF6 is a RING E3 ligase that undergoes auto-ubiquitination, which could be abolished by USP7 and induced by anti-cancer drugs. We propose that chemical induction of RNF6 auto-ubiquitination and degradation could be a novel strategy for the treatment of hematological malignancies including MM and leukemia.


Asunto(s)
Antineoplásicos , Proteínas de Unión al ADN , Leucemia Mielógena Crónica BCR-ABL Positiva , Mieloma Múltiple , Panobinostat , Ubiquitina-Proteína Ligasas , Ubiquitinación , Dedos de Zinc , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cisteína/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Mieloma Múltiple/tratamiento farmacológico , Panobinostat/farmacología , Panobinostat/uso terapéutico , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo
9.
Small ; 19(34): e2301815, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37183303

RESUMEN

Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High-power density supercapacitors and high-energy density rechargeable batteries are some of the most effective devices, while lithium-ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium-ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene-based composites in various kinds of magnesium-ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research.

10.
J Biomed Sci ; 30(1): 25, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069555

RESUMEN

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a clinically critical pathogen that causes severe infection. Due to improper antibiotic administration, the prevalence of CRKP infection has been increasing considerably. In recent years, the utilization of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has enabled the identification of bacterial isolates at the families and species level. Moreover, machine learning (ML) classifiers based on MALDI-TOF MS have been recently considered a novel method to detect clinical antimicrobial-resistant pathogens. METHODS: A total of 2683 isolates (369 CRKP cases and 2314 carbapenem-susceptible Klebsiella pneumoniae [CSKP]) collected in the clinical laboratories of Taipei Medical University Hospital (TMUH) were included in this study, and 80% of data was split into the training data set that were submitted for the ML model. The remaining 20% of data was used as the independent data set for external validation. In this study, we established an artificial neural network (ANN) model to analyze all potential peaks on mass spectrum simultaneously. RESULTS: Our artificial neural network model for detecting CRKP isolates showed the best performance of area under the receiver operating characteristic curve (AUROC = 0.91) and of area under precision-recall curve (AUPRC = 0.90). Furthermore, we proposed the top 15 potential biomarkers in probable CRKP isolates at 2480, 4967, 12,362, 12,506, 12,855, 14,790, 15,730, 16,176, 16,218, 16,758, 16,919, 17,091, 18,142, 18,998, and 19,095 Da. CONCLUSIONS: Compared with the prior MALDI-TOF and machine learning studies of CRKP, the amount of data in our study was more sufficient and allowing us to conduct external validation. With better generalization abilities, our artificial neural network model can serve as a reliable screening tool for CRKP isolates in clinical practice. Integrating our model into the current workflow of clinical laboratories can assist the rapid identification of CRKP before the completion of traditional antimicrobial susceptibility testing. The combination of MADLI-TOF MS and machine learning techniques can support physicians in selecting suitable antibiotics, which has the potential to enhance the patients' outcomes and lower the prevalence of antimicrobial resistance.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/diagnóstico , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Redes Neurales de la Computación , Rayos Láser
11.
Mol Cell Biochem ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515673

RESUMEN

Atherosclerosis (AS) is a dominant pathological basis of cardiovascular disease. Circular RNAs (circRNAs) have been proposed to have crucial functions in regulating pathological progressions of AS. Hence, the aim of this study was to investigate the potential function of circ_0090231 in AS progression. Oxidized low densitylipoprotein (ox-LDL)-challenged vascular smooth muscle cells (VSMCs) were used for in vitro functional analysis. Levels of genes and proteins were measured by qRT-PCR and Western blot. The proliferation, migration and invasion were assessed using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and transwell assays. The interaction between miR-942-5p and circ_0090231 or PPM1B (Protein Phosphatase, Mg2+/Mn2+ Dependent 1B) was evaluated by dual-luciferase reporter and pull-down assays. Circ_0090231 is a stable circRNA, and was increased in the serum of AS patients and ox-LDL-challenged VSMCs. Functionally, silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs. Mechanistically, circ_0090231 directly targeted miR-942-5p, and PPM1B was a target of miR-942-5p. Besides, circ_0090231 sequestered miR-942-5p to release PPM1B expression, suggesting the circ_0090231/miR-942-5p/PPM1B axis. Further rescue experiments showed that miR-942-5p inhibition or ectopic overexpression of PPM1B dramatically attenuated the suppressing influences of circ_0090231 knockdown on VSMC proliferative, migratory and invasive abilities under ox-LDL treatment. Silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs via miR-942-5p/PPM1B axis, providing a theoretical basis for elucidating the mechanism of AS process.

12.
Environ Res ; 239(Pt 2): 117406, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839529

RESUMEN

The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.


Asunto(s)
Contaminantes Ambientales , Porfirinas , Contaminantes Ambientales/química , Porosidad , Polímeros/química
13.
Appl Opt ; 62(15): 3848-3854, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37706693

RESUMEN

The effects of magnesium ion implantation and post-annealing on the photoelectric performance of a ß-G a 2 O 3-based vertical structural Schottky photodetector (PD) were thoroughly investigated. After implantation and post-annealing, the Schottky barrier height and bandgap of the G a 2 O 3 surface can be slightly increased, while the dark current is significantly reduced, and the light-to-dark current ratio is immensely improved. The PD exhibited a photo-to-dark current ratio of 1733, responsivity of 5.04 mA/W, and specific detectivity of 3.979×1011 Jones under -2.6V bias, and the rise and decay times are 0.157 were 0.048 s, respectively. The large left shift of the open-circuit voltage is feasibly explained by applying the thermionic-emission diffusion theory.

14.
Appl Opt ; 62(6): A76-A82, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36821301

RESUMEN

Organic-inorganic metal halide perovskite-based photodetectors (PDs) have attracted great attention because they exhibit extraordinary optoelectronic performances due to advantages such as a low trap-state density and large absorption coefficient. As a buffer layer, G a 2 O 3 can block electron hole recombination, passivate an Si surface, reduce trap density, and improve the ability of electron tunneling. Here, we demonstrate a trilayer hybrid structure (S i/G a 2 O 3/C H 3 N H 3 P b I 3) composed of an n-type silicon wafer, G a 2 O 3 interlayer, and C H 3 N H 3 P b I 3 thin film. The effect of different G a 2 O 3 layer thicknesses on the characteristics of a PD was studied, which shows that the responsivity first increases and then decreases with an increase in the G a 2 O 3 film thickness; the optimized G a 2 O 3 thickness is 300 nm. Additionally, the optimal responsivity, detectivity, and the rise and decay times are 7.2m A W -1, 7.448×1010 Jones, and 39 and 1.7 ms, respectively. This device has a better performance because G a 2 O 3 and perovskite have a matched energy level. We believe our work could provide a new way to fabricate high-performance optoelectronic devices.

15.
Artículo en Inglés | MEDLINE | ID: mdl-37450171

RESUMEN

Soluble growth stimulation expressed gene 2 protein (sST2) is a myocardial protein induced by biomechanical stress. sST2 is widely present in the serum of patients with heart failure and is recommended as an important indicator to predict adverse outcomes in these patients. However, no postmortem biochemical analysis of sST2 in forensic practice has been reported. The present pilot study aimed to investigate the expression of sST2 in the pericardial fluid of patients with sudden cardiac death (SCD) caused by ischemic heart disease (IHD). In addition, to explore the relationship of sST2 with CK-MB, cTnT, and NT-proBNP, which have been proven to be auxiliary biomarkers for the diagnosis of SCD, we analyzed CK-MB, cTnT, NT-proBNP, and sST2 levels in twenty-one pericardial fluid samples from the Center of Forensic Investigation, China Medical University, with a Roche cobas e 411 electrochemiluminescence automatic immunoassay system and ST2/IL-33R Valukine™ enzyme-linked immunosorbent assay kit. The levels of sST2 in the pericardial fluid of patients with SCD caused by IHD were significantly increased (P < 0.01) and positively correlated with CK-MB and NT-proBNP (P < 0.0001). Receiver operating characteristic curve analysis indicated that the combined measurement of sST2 and NT-proBNP has a higher diagnostic value for SCD caused by IHD than the measurement of either indicator alone. This study preliminarily demonstrated that sST2 in the pericardial fluid was significantly increased in patients with SCD caused by IHD and might be used as a novel auxiliary biomarker for postmortem diagnosis of SCD in forensic practice.

16.
Yi Chuan ; 45(7): 580-592, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37503582

RESUMEN

Tumors are serious threats to human health. The transcription factors are regarded as the potential targets for tumor treatment. As an important family of transcription factors, E2F family transcription factors (E2Fs) play vital roles in cell proliferation and regulation. However, the expression feature, gene functions, and molecular interactions of E2Fs in tumorigenesis are not clear. In this study, the transcriptome data, mutation data, and protein-protein interaction data of 10 high-incidence tumors in China from the TCGA database were integrated and analyzed to explore the expression, structure, function, mutation, and phylogenetic characteristics of E2Fs. The results showed that E2F1 and E2F7 were regularly upregulated in the tumor samples. Moreover, E2Fs participated in the regulation of the cell cycle, cell aging, and other signaling pathways. As an important regulator, E2F1 interacted with more proteins than other E2Fs. At the same time, the genetic mutation types of E2Fs varied in tumor type and patient sex, of which gene amplification accounts for the largest proportion. Phylogenetic analysis showed that E2Fs were conserved in 41 species, including fruit flies, nematodes, and humans. Meanwhile, E2Fs had a tendency for gene expansion during evolution. In conclusion, this study clarified the expression pattern, mutation characteristics, and evolutionary trend of E2Fs in high-incidence tumors in China, and suggested that E2F family transcription factors could be novel diagnostic markers for tumor diseases. Furthermore, this work can provide a theoretical basis for the development of anti-tumor-targeted drugs.


Asunto(s)
Carcinogénesis , Factores de Transcripción , Humanos , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Filogenia , Factores de Transcripción/genética , Ciclo Celular , Carcinogénesis/genética
17.
Small ; 18(30): e2202313, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35775923

RESUMEN

Magnesium-ion batteries (MIB) have gradually attracted attention owing to their high theoretical capacity, high safety, and low cost. A bimetallic metal-organic framework self-sacrificing template and a co-assembly strategy are used to prepare a high-performance, stable cycling NiSe2 -CoSe2 @TiVCTx (NCSe@TiVC) heterostructure MIB cathode that can be used as a flexible integrated unit to power future self-powered systems. Benefiting from the synergistic effect of TiVCTx MXene and NCSe, the NCSe@TiVC heterostructure electrode has a discharge-specific capacity of 136 mAh g-1 at 0.05 A g-1 and high cycling stability of over 500 cycles; the assembled pouch-cell device as flexible integrated unit exhibits good practicability. The magnesium ion storage mechanism is also validated using quantitative kinetic analysis, ex situ XRD, and XPS techniques. Density functional theory analysis indicates the most stable Mg-atom adsorption sites in the heterostructure. This study broadens the possibilities for applying the TiVCTx MXene heterostructure to energy storage materials and future self-powered flexible systems.

18.
BMC Vet Res ; 18(1): 222, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690747

RESUMEN

BACKGROUND: Histomonas meleagridis is an anaerobic, intercellular parasite, which infects gallinaceous birds such as turkeys and chickens. In recent years, the reemergence of Histomoniasis has caused serious economic losses as drugs to treat the disease have been banned. At present, H. meleagridis research focuses on virulence, gene expression analysis, and the innate immunity of the host. However, there are no studies on the differentially expressed miRNAs (DEMs) associated with the host inflammatory and immune responses induced by H. meleagridis. In this research, high-throughput sequencing was used to analyze the expression profile of cecum miRNA at 10 and 15 days post-infection (DPI) in chickens infected with Chinese JSYZ-F strain H. meleagridis. RESULTS: Compared with the controls, 94 and 127 DEMs were found in cecum of infected chickens at 10 DPI (CE vs CC) and 15 DPI (CEH vs CCH), respectively, of which 60 DEMs were shared at two-time points. Gene Ontology (GO) functional enrichment analysis of the target genes of DEMs indicated that 881 and 1027 GO terms were significantly enriched at 10 and 15 DPI, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG, www.kegg.jp/kegg/kegg1.html ) pathway enrichment analysis of the target genes of DEMs demonstrated that 5 and 3 KEGG pathways were significantly enriched at 10 and 15 DPI, respectively. For previous uses, the Kanehisa laboratory have happily provided permission. The integrated analysis of miRNA-gene network revealed that the DEMs played important roles in the host inflammatory and immune responses to H. meleagridis infection by dynamically regulating expression levels of inflammation and immune-related cytokines. CONCLUSION: This article not only suggested that host miRNA expression was dynamically altered by H. meleagridis and host but also revealed differences in the regulation of T cell involved in host responses to different times H. meleagridis infection.


Asunto(s)
MicroARNs , Enfermedades de las Aves de Corral , Infecciones Protozoarias en Animales , Trichomonadida , Animales , Ciego , Pollos/parasitología , MicroARNs/genética , Enfermedades de las Aves de Corral/parasitología , Trichomonadida/genética , Pavos
19.
BMC Pregnancy Childbirth ; 22(1): 629, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941542

RESUMEN

BACKGROUND: This study aimed to identify multiple endometrial receptivity related factors by applying non-invasive, repeatable multimodal ultrasound methods. Combined with basic clinical data, we further established a practical prediction model for early clinical outcomes in Freeze-thawed Embryo Transfer (FET). METHODS: Retrospective analysis of clinical data of infertility patients undergoing FET cycle in our Center from January 2017 to September 2019. Receiver operating characteristic (ROC) curve and decision curve analyses were performed by 500 bootstrap resamplings to assess the determination and clinical value of the nomogram, respectively. RESULTS: A total of 2457 FET cycles were included. We developed simple nomograms that predict the early clinical outcomes in FET cycles by using the parameters of age, BMI, type and number of embryos transferred, endometrial thickness, FI, RI, PI and number of endometrial and sub-endometrial blood flow. In the training cohort, the area under the ROC curve (AUC) showed statistical accuracy (AUC = 0.698), and similar results were shown in the subsequent validation cohort (AUC = 0.699). Decision curve analysis demonstrated the clinical value of this nomogram. CONCLUSIONS: Our nomogram can predict clinical outcomes and it can be used as a simple, affordable and widely implementable tool to provide guidance and treatment recommendations for FET patients.


Asunto(s)
Criopreservación , Nomogramas , Criopreservación/métodos , Transferencia de Embrión/métodos , Endometrio/diagnóstico por imagen , Femenino , Humanos , Embarazo , Índice de Embarazo , Estudios Retrospectivos
20.
Ecotoxicol Environ Saf ; 241: 113788, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35738103

RESUMEN

The beneficial roles of resveratrol (RES) in affecting proliferation of multiple cancer cells have attracted intensive attention. However, the underlying mechanism remains unclear. This study aims to bridge the knowledge gap by investigating RES-induced growth inhibition of HeLa cells. Our work focuses on the metergasis of mitochondria in the RES-exposed cells. Therefore, HeLa cells were treated with different concentrations of RES for 30 min and 24 h, respectively. As a result, concentration-dependent increases in cell growth inhibition, ROS (reactive oxygen species) triggering, and LC3-II (light chain 3-II) expression were detected in the HeLa cells exposed to RES for 24 h. Interestingly, a specific concentration-dependent effect was observed in the HeLa cells exposed to RES for 30 min, that is, low concentration RES (≤ 25 µmol/L) reduced ROS levels, inhibited transcription and expression levels of LC3-II, and stimulated mitochondrial respiratory capacities. In contrast, high concentration RES (50 and 100 µmol/L) induced ROS over-production and autophagy in the cells, resulting in decreased levels of mitochondrial membrane potential, mitochondrial DNA copy numbers, and mitochondrial respiratory capacities. Together, our data concluded that RES inhibited HeLa cell proliferation through perturbation of mitochondrial structure and function, and ROS-induced autophagy also played a critical role in the process.


Asunto(s)
Apoptosis , Mitocondrias , Autofagia , Proliferación Celular , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA