Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555582

RESUMEN

The loss of seed shattering is an important event in crop domestication, and elucidating the genetic mechanisms underlying seed shattering can help reduce yield loss during crop production. This study is the first to systematically identify and analyse the BELL family of transcription factor-encoding genes in Chinese wild rice (Zizania latifolia). ZlqSH1a (Zla04G033720) and ZlqSH1b (Zla02G027130) were identified as key candidate genes involved in seed shattering in Z. latifolia. These genes were involved in regulating the development of the abscission layer (AL) and were located in the nucleus of the cell. Over-expression of ZlqSH1a and ZlqSH1b resulted in a complete AL between the grain and pedicel and significantly enhanced seed shattering after grain maturation in rice. Transcriptome sequencing revealed that 172 genes were differentially expressed between the wild type (WT) and the two transgenic (ZlqSH1a and ZlqSH1b over-expressing) plants. Three of the differentially expressed genes related to seed shattering were validated using qRT-PCR analysis. These results indicate that ZlqSH1a and ZlqSH1b are involved in AL development in rice grains, thereby regulating seed shattering. Our results could facilitate the genetic improvement of seed-shattering behaviour in Z. latifolia and other cereal crops.


Asunto(s)
Oryza , Domesticación , Genes de Plantas , Semillas , Grano Comestible/genética
2.
Bioorg Chem ; 104: 104252, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32911187

RESUMEN

Sesquiterpenoids with diverse skeleton types are regarded as potential lead compounds in pharmacological and other applications. Herein, we report the discovery of two new cadinane-type sesquiterpenoids, paecilacadinol A (1) and B (2); two new drimane-type sesquiterpenoids, ustusol D (3) and ustusol E (4); and six known analogs (5-10) from the endophytic fungus Paecilomyces sp. TE-540, enriching the structural diversity of naturally occurring sesquiterpenoids. Their planar structures were determined on the basis of detailed interpretation of 1D and 2D NMR spectroscopy and HRESIMS data, while their stereochemical structures were established by X-ray crystallographic analyses for 1 and 3-8 and theoretical calculations for 2. Notably, compounds 1 and 2 represent novel examples of cadinane-type sesquiterpenoids with ether bonds formed by intramolecular dehydration. Compounds 5 and 6 showed moderate activities against acetylcholinesterase (AChE), with IC50 values of 43.02 ± 6.01 and 35.97 ± 2.12 µM, respectively. Docking analysis predicted that 5 bound well in the catalytic pocket of AChE via hydrophobic interactions with Trp84, Gly117, Ser122, and Tyr121 residues, while 6 was located with Asp72 and Ser122 residues.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Nicotiana/química , Paecilomyces/metabolismo , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos/farmacología , Acetilcolinesterasa/metabolismo , Animales , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Relación Dosis-Respuesta a Droga , Electrophorus , Estructura Molecular , Paecilomyces/química , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Relación Estructura-Actividad
3.
Mar Drugs ; 18(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233849

RESUMEN

One new meroterpenoid-type alkaloid, oxalicine C (1), and two new erythritol derivatives, penicierythritols A (6) and B (7), together with four known meroterpenoids (2-5), were isolated from the marine algal-derived endophytic fungus Penicillium chrysogenum XNM-12. Their planar structures were determined by means of spectroscopic analyses, including UV, 1D and 2D NMR, and HRESIMS spectra. Their stereochemical configurations were established by comparing the experimental and calculated electronic circular dichroism (ECD) spectra for compound 1, as well as by comparison of the optical rotations with literature data for compounds 6 and 7. Notably, oxalicine C (1) represents the first example of an oxalicine alkaloid with a cleaved α-pyrone ring, whereas penicierythritols A (6) and B (7) are the first reported from the Penicillium species. The antimicrobial activities of compounds 1-7 were evaluated. Compounds 1 and 6 exhibited moderate antibacterial effects against the plant pathogen Ralstonia solanacearum with minimum inhibitory concentration (MIC) values of 8 and 4 µg/mL, respectively. Compound 6 also possesses moderate antifungal properties against the plant pathogen Alternaria alternata with a MIC value of 8 µg/mL.


Asunto(s)
Alternaria/efectos de los fármacos , Antibacterianos/farmacología , Antifúngicos/farmacología , Eritritol/farmacología , Penicillium chrysogenum/metabolismo , Ralstonia solanacearum/efectos de los fármacos , Estramenopilos/microbiología , Terpenos/farmacología , Alternaria/crecimiento & desarrollo , Antibacterianos/aislamiento & purificación , Antifúngicos/aislamiento & purificación , Eritritol/análogos & derivados , Eritritol/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ralstonia solanacearum/crecimiento & desarrollo , Metabolismo Secundario , Relación Estructura-Actividad , Terpenos/aislamiento & purificación
4.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751062

RESUMEN

Metabolic associated fatty liver disease (MAFLD) due to excess weight and obesity threatens public health worldwide. Gut microbiota dysbiosis contributes to obesity and related diseases. The cholesterol-lowering, anti-inflammatory, and antioxidant effects of wild rice have been reported in several studies; however, whether it has beneficial effects on the gut microbiota is unknown. Here, we show that wild rice reduces body weight, liver steatosis, and low-grade inflammation, and improves insulin resistance in high-fat diet (HFD)-fed mice. High-throughput 16S rRNA pyrosequencing demonstrated that wild rice treatment significantly changed the gut microbiota composition in mice fed an HFD. The richness and diversity of the gut microbiota were notably decreased upon wild rice consumption. Compared with a normal chow diet (NCD), HFD feeding altered 117 operational taxonomic units (OTUs), and wild rice supplementation reversed 90 OTUs to the configuration in the NCD group. Overall, our results suggest that wild rice may be used as a probiotic agent to reverse HFD-induced MAFLD through the modulation of the gut microbiota.


Asunto(s)
Disbiosis/prevención & control , Hígado Graso/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Consorcios Microbianos/efectos de los fármacos , Oryza/química , Probióticos/administración & dosificación , Animales , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Disbiosis/etiología , Disbiosis/genética , Disbiosis/metabolismo , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/metabolismo , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Expresión Génica , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Inflamación , Resistencia a la Insulina , Masculino , Malondialdehído/sangre , Ratones , Ratones Endogámicos C57BL , Consorcios Microbianos/fisiología , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Triglicéridos/sangre , Aumento de Peso/efectos de los fármacos
5.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252284

RESUMEN

The symbiont endophytic fungi in tobacco are highly diverse and difficult to classify. Here, we sequenced the genomes of Curvularia trifolii and Leptosphaerulina chartarum isolated from tobacco plants. Finally, 41.68 Mb and 37.95 Mb nuclear genomes were sequenced for C. trifolii and L. chartarum with the scaffold N50, accounting for 638.94 Kb and 284.12 Kb, respectively. Meanwhile, we obtained 68,926 bp and 59,100 bp for their mitochondrial genomes. To more accurately classify C. trifolii and L. chartarum, we extracted seven nuclear genes and 12 mitochondrial genes from these two genomes and their closely related species. The genes were then used for calculation of evolutionary rates and for phylogenetic analysis. Results showed that it was difficult to achieve consistent results using a single gene due to their different evolutionary rates, while the phylogenetic trees obtained by combining datasets showed stable topologies. It is, therefore, more accurate to construct phylogenetic relationships for endophytic fungi based on multi-gene datasets. This study provides new insights into the distribution and characteristics of endophytic fungi in tobacco.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/genética , Genoma Fúngico , Genoma Mitocondrial , Genómica , Nicotiana/microbiología , Filogenia , Ascomicetos/aislamiento & purificación , Evolución Molecular , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
6.
Molecules ; 24(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052148

RESUMEN

Due to the importance of proanthocyanidin bioactivity and its relationship with chemical structure, ultrasound-assisted extraction and purification schemes were proposed to evaluate the proanthocyanidin content and analyze the structural composition and potential bioactivities of different proanthocyanidin fractions from Chinese wild rice (Zizania latifolia). Following an optimized extraction procedure, the crude wild rice proanthocyanidins (WRPs) were purified using n-butanol extraction, chromatography on macroporous resins, and further fractionation on Sephadex LH-20 to yield six specific fractions (WRPs-1-WRPs-6) containing proanthocyanidin levels exceeding 524.19 ± 3.56 mg/g extract. Structurally, (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin were present as both terminal and extension units, and (-)-epicatechin was the major extension unit, in each fraction. This is the first preparation of WRP fractions with a different mean degree of polymerization (mDP), ranging from 2.66 ± 0.04 to 10.30 ± 0.46. A comparison of the bioactivities of these fractions revealed that fractions WRPs-1-WRPs-5 had significant DPPH radical scavenging activities, whereas fraction WRPs-6 with a high mDP showed better α-glucosidase and pancreatic lipase inhibitory effects. These findings should help define possible applications of WRPs to functional foods or nutraceuticals.


Asunto(s)
Oryza/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión , Activación Enzimática , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Concentración 50 Inhibidora , Estructura Molecular , Extractos Vegetales/farmacología , Proantocianidinas/farmacología
7.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384488

RESUMEN

Fungal endophytes are the most ubiquitous plant symbionts on earth and are phylogenetically diverse. Studies on the fungal endophytes in tobacco have shown that they are widely distributed in the leaves, stems, and roots, and play important roles in the composition of the microbial ecosystem of tobacco. Herein, we analyzed and quantified the endophytic fungi of healthy tobacco leaves at the seedling stage (SS), resettling growth stage (RGS), fast-growing stage (FGS), and maturing stage (MS) at three altitudes (600, 1000, and 1300 m). We sequenced the internal transcribed spacer (ITS) region of fungal samples to delimit operational taxonomic units (OTUs) and phylogenetically characterize the communities. The results showed that the numbers of clustering OTUs at SS, RGS, FGS, and MS were 516, 709, 469, and 428, respectively. At the phylum level, species in Ascomycota and Basidiomycota had absolute predominance, representing 97.8% and 2.0% of the total number of species, respectively. We also found the number of fungi at the RGS and FGS stages was higher than those at the other two stages. Additionally, OTU richness was determined by calculating the Observed Species, Shannon, Simpson, Chao1, abundance-based coverage estimator (ACE), Good's coverage and phylogenetic distance (PD)_whole_tree indices based on the total number of species. Our results showed RGS samples had the highest diversity indices. Furthermore, we found that the diversity of fungal communities tended to decrease with increasing altitude. The results from this study indicated that tobacco harbors an abundant and diverse endophytic fungal community, which provides new opportunities for exploring their potential utilization.


Asunto(s)
Ascomicetos/genética , Basidiomycota/genética , Variación Genética , Microbiota/fisiología , Nicotiana/microbiología , Filogenia , Hojas de la Planta/microbiología , Plantones/microbiología
8.
Molecules ; 23(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30572672

RESUMEN

Chromatographic separation of a marine algal-derived endophytic fungus Penicillium chrysogenum AD-1540, which was isolated from the inner tissue of the marine red alga Grateloupia turuturu, yielded two new benzophenone derivatives, chryxanthones A and B (compounds 1 and 2, respectively). Their structures were undoubtedly determined by comprehensive analysis of spectroscopic data (1D/2D NMR and HRESIMS). The relative and absolute configurations were assigned by analysis of the coupling constants and time-dependent density functional theory (TDDFT) calculations of their electronic circular dichroism (ECD) spectra, respectively. Both compounds possessed an unusual dihydropyran ring (ring D) fused to an aromatic ring, rather than the commonly occurring prenyl moiety, and a plausible biosynthetic pathway was postulated. The cytotoxicities of compounds 1 and 2 were evaluated against six human cell lines, and both of the compounds demonstrated weak to moderate cytotoxicities with IC50 values ranging from 20.4 to 46.4 µM. These new compounds further demonstrate the potential of marine-derived fungi as an untapped source of pharmaceutical components with unique properties that could be developed as drug candidates.


Asunto(s)
Benzofenonas/química , Benzofenonas/farmacología , Penicillium chrysogenum/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Policétidos/química , Policétidos/farmacología
9.
Molecules ; 23(11)2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30373196

RESUMEN

To provide further insights into the potential health-promoting antioxidants from wild rice (Zizania latifolia), which is an abundant but underutilized whole grain resource in East Asia, a partial purification based on D101 macroporous resin was carried out for the purification and enrichment of the antioxidants from the bioactive ethanol extracts of wild rice. On that basis, 34 phenolic compounds in the antioxidant fractions were identified by a high-performance liquid chromatography-linear ion trap quadrupole-Orbitrap-mass spectrometry (HPLC-LTQ-Orbitrap-MSn). The results suggested that phenolic acids could be enriched in the 10% ethanol-eluted fraction whereas flavonoids (including procyanidins and flavonoid glycosides) could be enriched in 20⁻30% ethanol-eluted fractions. A quantitative analysis determined by the multiple reaction monitoring mode of the ultra-performance liquid chromatography-triple quadrupole-tandem mass spectrometry (UPLC-QqQ-MS/MS) revealed a high content of procyanidins in wild rice. Compared with phenolic acids, flavonoids may contribute more to the potent antioxidant activity of wild rice. This is the first study on the antioxidants from wild rice Z. latifolia. These findings provide novel information on the functional components of wild rice, and will be of value to further research and development on Z. latifolia.


Asunto(s)
Antioxidantes/química , Antioxidantes/aislamiento & purificación , Oryza/química , Antioxidantes/farmacología , Cromatografía Liquida , Flavonoides/química , Estructura Molecular , Fenoles/química , Fenoles/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Solventes/química , Solventes/aislamiento & purificación , Solventes/farmacología , Espectrometría de Masas en Tándem
10.
Molecules ; 23(12)2018 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-30513840

RESUMEN

An endophytic fungus Arthrinium arundinis TE-3 was isolated and purified from the fresh leaves of cultivated tobacco (Nicotiana tabacum L.). Chemical investigation on this fungal strain afforded three new prenylated diphenyl ethers (1-3) as well as three known analogues (4-6). Structure elucidation of the isolated compounds was carried out by analysis of 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HRESIMS) spectra, as well as by comparison of those data with literature data. The absolute configuration of the stereogenic center at C-8 in 1 was assigned by comparison of the experimental and calculated ECD spectra. Compounds 1 and 2 showed selective antifungal activity against Mucor hiemalis with minimum inhibitory concentration (MIC) values of 8 and 4 µg/mL, respectively. Compounds 5 and 6 exhibited inhibitory activity against Alteraria alternata with an MIC value of 8 µg/mL. In the cytotoxic assay, 2, 5, and 6 displayed moderate in vitro cytotoxicity against the human monocytic cell line (THP-1 cell line), with IC50 values of 40.2, 28.3, and 25.9 µM, respectively. This study indicated that endophytic fungi possess great potential for exploring new bioactive secondary metabolites.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/química , Endófitos/química , Nicotiana/microbiología , Éteres Fenílicos/farmacología , Hojas de la Planta/microbiología , Prenilación , Antifúngicos/química , Ascomicetos/aislamiento & purificación , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , Endófitos/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Éteres Fenílicos/química , Espectroscopía de Protones por Resonancia Magnética
11.
Genet Mol Biol ; 40(4): 844-854, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29064513

RESUMEN

Engyodontium album is a widespread pathogen that causes different kinds of dermatoses and respiratory tract diseases in humans and animals. In spite of its perniciousness, the basic genetic and molecular background of this species remains poorly understood. In this study, the mitochondrial genome sequence of E. album was determined using a high-throughput sequencing platform. The circular mitogenome was found to be 28,081 nucleotides in length and comprised of 17 protein-coding genes, 24 tRNA genes, and 2 rRNA genes. The nucleotide composition of the genome was A+T-biased (74.13%). Group-II introns were found in the nad1, nad5, and cob genes. The most frequently used codon of protein-coding genes was UAU. Isoleucine was identified as the most common amino acid, while proline was the least common amino acid in protein-coding genes. The gene-arrangement order is nearly the same when compared with other Ascomycota mitogenomes. Phylogenetic relationships based on the shared protein-coding genes revealed that E. album is closely related to the Cordycipitaceae family, with a high-confidence support value (100%). The availability of the mitogenome of E. album will shed light on the molecular systematic and genetic differentiation of this species.

12.
Pak J Pharm Sci ; 28(2 Suppl): 761-4, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25796151

RESUMEN

Extractives, important compounds from wood, provide abundant resources for woody medicine. In this study, the three extractives from Cunninghamia lanceolata wood were removed by method of three-stage extraction with alcohol, petroleum ether, and alcohol/petroleum ether and their chemical components were analyzed by gas chromatography-mass spectrometry (GC-MS). Thirteen chemical components were discovered in the first-stage extractives, including: 4-((1e)-3-hydroxy-1-propenyl)-2-methoxyphenol (36.80%), α-(2-phenylethenyl)-1-piperidineacetonitrile (15.39%). One-hundred chemical components were discovered in the second-stage extractives, including: [1s-(1α,4aα,10aß)]-1, 2,3,4,4a,9,10,10a-octahydro-1,4a- dimethyl-7-(1-methylethyl)-1- phenanthrenecar-boxylic acid (15.16%), 1,3-dimethoxy-5-[(1e)-2- phenylethenyl]-benzene (6.99%). Seven chemical components were discovered in the third-stage extractives, including: 1,3-dimethoxy -5-[(1E)-2-phenylethenyl]-benzene (32.88%), stigmasta-4,6,22-trien-3α-ol (17.83%). And both the main retention time of the first-stage and which of third-stage extractives are 20-30 minutes, and the main retention time of the second-stage extractives is <10 minutes. Besides, the three extractives contained many biomedical molecular, such as [1s-(1α,4aα,10aß)]-1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-methylethyl)-1-phenanthrenecar-boxylic acid, squalene, stigmast-4-en-3-one and γ-sitosterol and so on, which means that the three extractives from Cunninghamia lanceolata wood have huge potential in biomedicine.


Asunto(s)
Cunninghamia/química , Extractos Vegetales/química , Madera/química , Alcanos/química , Biomasa , Fraccionamiento Químico , Etanol/química , Cromatografía de Gases y Espectrometría de Masas , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Solventes/química
13.
Pak J Pharm Sci ; 27(6 Suppl): 2073-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25410075

RESUMEN

As one of famous shrubs in China, Buxus microphylla is considered as the important wattle. However, the constituents of Buxus microphylla stem extracts aren't used effectively. Therefore, the molecules of stem extracts in Buxus microphylla are analyzed to further utilize the resources. The results show that the optimal extraction time of ethanol/methanol extraction, petroleum ether/ benzene extraction, and benzene/alcohol extraction are 7h, 7h, and 5h, respectively. The HK-61, HK-63, HK-73, HK-81, HK-82 stem extracts are obtained 1, 9, 1, 27, and 1 components, respectively. The stem extracts of Buxus microphylla is rich in drug and biomedical activities. Buxus microphylla stem is fit to extract 1,5-hexadien-3-yne, squalene, and dibutyl phthalate.


Asunto(s)
Buxus/química , Extractos Vegetales/análisis , Cromatografía de Gases y Espectrometría de Masas , Tallos de la Planta/química
14.
Front Plant Sci ; 14: 1183739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324716

RESUMEN

Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.

15.
Commun Biol ; 5(1): 36, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017643

RESUMEN

Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Poaceae/genética , Semillas/genética , China , Oryza/genética , Filogenia , Poaceae/metabolismo
16.
Plants (Basel) ; 10(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34451665

RESUMEN

Phytophthora nicotianae is a widely distributed plant pathogen that can cause serious disease and cause significant economic losses to various crops, including tomatoes, tobacco, onions, and strawberries. To understand its pathogenic mechanisms and explore strategies for controlling diseases caused by this pathogen, we sequenced and analyzed the whole genome of Ph. nicotianae JM01. The Ph. nicotianae JM01 genome was assembled using a combination of approaches including shotgun sequencing, single-molecule sequencing, and the Hi-C technique. The assembled Ph. nicotianae JM01 genome is about 95.32 Mb, with contig and scaffold N50 54.23 kb and 113.15 kb, respectively. The average GC content of the whole-genome is about 49.02%, encoding 23,275 genes. In addition, we identified 19.15% of interspersed elements and 0.95% of tandem elements in the whole genome. A genome-wide phylogenetic tree indicated that Phytophthora diverged from Pythium approximately 156.32 Ma. Meanwhile, we found that 252 and 285 gene families showed expansion and contraction in Phytophthora when compared to gene families in Pythium. To determine the pathogenic mechanisms Ph. nicotianae JM01, we analyzed a suite of proteins involved in plant-pathogen interactions. The results revealed that gene duplication contributed to the expansion of Cell Wall Degrading Enzymes (CWDEs) such as glycoside hydrolases, and effectors such as Arg-Xaa-Leu-Arg (RXLR) effectors. In addition, transient expression was performed on Nicotiana benthamiana by infiltrating with Agrobacterium tumefaciens cells containing a cysteine-rich (SCR) protein. The results indicated that SCR can cause symptoms of hypersensitive response. Moreover, we also conducted comparative genome analysis among four Ph. nicotianae genomes. The completion of the Ph. nicotianae JM01 genome can not only help us understand its genomic characteristics, but also help us discover genes involved in infection and then help us understand its pathogenic mechanisms.

17.
Front Pharmacol ; 11: 570450, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178020

RESUMEN

Fungal secondary metabolites serve as a rich resource for exploring lead compounds with medicinal importance. Diorcinol N (DN), a fungal secondary metabolite isolated from an endophytic fungus, Arthrinium arundinis, exhibits robust anticancer activity. However, the anticancer mechanism of DN remains unclear. In this study, we examined the growth-inhibitory effect of DN on different human cancer cell lines. We found that DN decreased the viability of A3 T-cell leukemia cells in a time- and concentration-dependent manner. Transcriptome analysis indicated that DN modulated the transcriptome of A3 cells. In total, 9,340 differentially expressed genes were found, among which 4,378 downregulated genes and 4,962 upregulated genes were mainly involved in autophagy, cell cycle, and DNA replication. Furthermore, we demonstrated that DN induced autophagy, cell cycle arrest in the G1/S phase, and downregulated the expression of autophagy- and cell cycle-related genes in A3 cells. By labeling A3 cells with acridine orange/ethidium bromide, Hoechst 33,258, and monodansylcadaverine and via transmission electron microscopy, we found that DN increased plasma membrane permeability, structural disorganization, vacuolation, and autophagosome formation. Our study provides evidence for the mechanism of anticancer activity of DN in T-cell leukemia (A3) cells and demonstrates the promise of DN as a lead or even candidate molecule for the treatment of acute lymphoblastic leukemia.

18.
Huan Jing Ke Xue ; 41(9): 4234-4245, 2020 Sep 08.
Artículo en Zh | MEDLINE | ID: mdl-33124305

RESUMEN

This study aims to explore the effects of different biochar applications on soil physical and chemical properties in a Eucalyptus plantation in Northern Guangxi, find the best biochar application amount, and provide scientific guidance for the efficient utilization of forest residue and soil improvement. The soil of a four-year Eucalyptus plantation at the Huangmian forest farm in Northern Guangxi was selected as the study area, and six treatments including 0 (CK), 0.5% (T1), 1.0% (T2), 2% (T3), 4% (T4), and 6% (T5) were set through a field-positioning experiment to analyze the changes in soil physical and chemical properties under different application rates. Compared with the 0-30 cm soil layer of the control treatment, biochar application decreased the mean soil bulk by 3.82%-33.55%, while it increased the soil natural water content, capillary porosity, and total capillary porosity by 7.67%-31.75%, 8.95%-33.19%, and 9.28%-35.86%, respectively. The contents of exchangeable acid, exchangeable aluminum, exchangeable hydrogen, and exchangeable sodium in the soil decreased by 8.28%-70.03%, 5.55%-70.34%, 5.10%-21.78%, and 12.81%-49.27%. Biochar application increased the cation exchange capacity, electrical conductivity, exchangeable magnesium, and exchangeable calcium by 27.08%-160.39%, 117.00%-546.64%, 17.10%-66.14%, and 17.38%-71.38%, respectively. Soil pH increased by 0.17-1.29 after biochar addition. Similarly, the contents of soil organic carbon, total phosphorus, total potassium, available nitrogen, available phosphorus, and available potassium increased by 10.94%-51.37%, 14.29%-59.45%, 6.48%-59.57%, 6.28%-29.41%, 4.79%-19.81%, and 7.72%-75.87%. There was a positive correlation among the main physical and chemical factors. The physical and chemical properties reached their maximum values in the T4 or T5 treatment (4% or 6%). Biochar application provided considerable relief from soil acidification in the Eucalyptus plantation and had a positive effect on soil physicochemical properties. The addition 4%-6% of ripe Eucalyptus biochar produced the optimum results. The results show that biochar can improve the physical and chemical properties of soil, increase soil fertility, and enhance the soil's ability to retain water and fertilizer after twelve months. The findings of this study can be used as a reference in practical applications for soil improvement and sustainable management of Eucalyptus plantations.


Asunto(s)
Eucalyptus , Suelo , Carbono/análisis , Carbón Orgánico , China , Nitrógeno/análisis
19.
Biomolecules ; 9(2)2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696084

RESUMEN

Recently, the incidence of hepatocellular carcinoma has increased worldwide. Cembranoid-type diterpenes (CBDs) from tobacco exhibit good antimicrobial, antitumor, and neuroprotective activities. Therefore, in this study, we isolated CBDs from Nicotiana tabacum L. and evaluated their antitumor activity against hepatoma cell lines. Particularly, the anti-tumor activity of α-2,7,11-cyprotermine-4,6-diol (α-CBD) was investigated against HepG2, SMMC-7721, and HL-7702 cells. The MTT assay revealed that α-CBD reduced the formation of cell clones and inhibited the proliferation of hepatocellular carcinoma cells. Morphological observations showed that α-CBD altered cell morphology and membrane permeability before inducing apoptosis. To further explore the antitumor mechanism of α-CBD, flow cytometry and transcriptome analysis were performed using HepG2 cells. The results showed that the number of HepG2 cells increased from 10.4% to 29.8%, indicating that α-CBD inhibits the proliferation of hepatocellular carcinoma cells in the S phase. The gene expression analysis of HepG2 cells treated with α-CBD showed 3068 genes with altered expression, among which 1289 were upregulated and 1779 were downregulated. Apoptosis induced by these differentially expressed genes might be mediated by the p53-PUMA, PI3K-Akt, and IL-1-NF-κB-IAP pathways. Comprehensively, our study shows that α-CBD isolated from N. tabacum L. can be potentially used as a natural antitumor agent.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diterpenos/farmacología , Nicotiana/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diterpenos/química , Diterpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
J Agric Food Chem ; 67(43): 11994-12001, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31618578

RESUMEN

Bioactivity-guided isolation of the endophytic fungus Fusarium sambucinum TE-6L residing in Nicotiana tabacum L. led to the discovery of two new angularly prenylated indole alkaloids (PIAs) with pyrano[2,3-g]indole moieties, amoenamide C (1) and sclerotiamide B (2), and four known biosynthetic congeners (3-6). Their structures were determined by comprehensive spectroscopic techniques, electronic circular dichroism (ECD), and X-ray diffraction. Compound 1 containing the bicyclo[2.2.2]diazaoctane core and indoxyl unit is rarely reported. All the compounds were evaluated for their antimicrobial and insecticidal activities. Notably, compounds 1-3 showed potent inhibitory effects against three human- and one plant-pathogenic bacterium, and seven plant-pathogenic fungi. Compounds 2-4 also exhibited remarkable larvicidal activity against first instar larvae of the cotton bollworm Helicoverpa armigera with mortality rates of 70.2%, 83.2%, and 70.5%, respectively. Further toxicity tests on zebrafish embryos were performed to evaluate the potential toxicity of PIAs. Of significance was that compound 3 in particular exhibited the highest activities but the lowest effects on the hatching of embryos among all the compounds. This study provides a basis for understanding developmental toxicity of PIAs exposure to zebrafish embryos, and also indicates the potential environmental risks of other natural compounds exposure in the aquatic ecosystem.


Asunto(s)
Antiinfecciosos/química , Endófitos/química , Fusarium/química , Alcaloides Indólicos/química , Insecticidas/química , Animales , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Endófitos/aislamiento & purificación , Hongos/efectos de los fármacos , Fusarium/aislamiento & purificación , Alcaloides Indólicos/metabolismo , Alcaloides Indólicos/farmacología , Insecticidas/metabolismo , Insecticidas/farmacología , Larva/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mariposas Nocturnas/efectos de los fármacos , Nicotiana/microbiología , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA