RESUMEN
ConspectusSingle atom electrocatalysts, with noble metal-free composition, maximal atom efficiency, and exceptional reactivity toward various energy and environmental applications, have become a research hot spot in the recent decade. Their simplicity and the isolated nature of the atomic structure of their active site have also made them an ideal model catalyst system for studying reaction mechanisms and activity trends. However, the state of the single atom active sites during electrochemical reactions may not be as simple as is usually assumed. To the contrary, the single atom electrocatalysts have been reported to be under greater influence from interfacial dynamics, with solvent and electrolyte ions perpetually interacting with the electrified active center under an applied electrode potential. These complexities render the activity trends and reaction mechanisms derived from simplistic models dubious.In this Account, with a few popular single atom electrocatalysis systems, we show how the change in electrochemical potential induces nontrivial variation in the free energy profile of elemental electrochemical reaction steps, demonstrate how the active centers with different electronic structure features can induce different solvation structures at the interface even for the same reaction intermediate of the simplest electrochemical reaction, and discuss the implication of the complexities on the kinetics and thermodynamics of the reaction system to better address the activity and selectivity trends. We also venture into more intriguing interfacial phenomena, such as alternative reaction pathways and intermediates that are favored and stabilized by solvation and polarization effects, long-range interfacial dynamics across the region far beyond the contact layer, and the dynamic activation or deactivation of single atom sites under operation conditions. We show the necessity of including realistic aspects (explicit solvent, electrolyte, and electrode potential) into the model to correctly capture the physics and chemistry at the electrochemical interface and to understand the reaction mechanisms and reactivity trends. We also demonstrate how the popular simplistic design principles fail and how they can be revised by including the kinetics and interfacial factors in the model. All of these rich dynamics and chemistry would remain hidden or overlooked otherwise. We believe that the complexity at an electrochemical interface is not a curse but a blessing in that it enables deeper understanding and finer control of the potential-dependent free energy landscape of electrochemical reactions, which opens up new dimensions for further design and optimization of single atom electrocatalysts and beyond. Limitations of current methods and challenges faced by the theoretical and experimental communities are discussed, along with the possible solutions awaiting development in the future.
RESUMEN
Electrochemical carbon capture and concentration (eCCC) offers a promising alternative to thermochemical processes as it circumvents the limitations of temperature-driven capture and release. This review will discuss a wide range of eCCC approaches, starting with the first examples reported in the 1960s and 1970s, then transitioning into more recent approaches and future outlooks. For each approach, the achievements in the field, current challenges, and opportunities for improvement will be described. This review is a comprehensive survey of the eCCC field and evaluates the chemical, theoretical, and electrochemical engineering aspects of different methods to aid in the development of modern economical eCCC technologies that can be utilized in large-scale carbon capture and sequestration (CCS) processes.
RESUMEN
Aqueous direct air capture (DAC) is a key technology toward a carbon negative infrastructure. Developing sorbent molecules with water and oxygen tolerance and high CO2 binding capacity is therefore highly desired. We analyze the CO2 absorption chemistries on amines, alkoxides, and phenoxides with density functional theory calculations, and perform inverse molecular design of the optimal sorbent. The alkoxides and phenoxides are found to be more suitable for aqueous DAC than amines thanks to their water tolerance (lower pKa prevents protonation by water) and capture stoichiometry of 1:1 (2:1 for amines). All three molecular systems are found to generally obey the same linear scaling relationship (LSR) between [Formula: see text] and [Formula: see text], since both CO2 and proton are bonded to the nucleophilic (alkoxy or amine) binding site through a majorly [Formula: see text] bonding orbital. Several high-performance alkoxides are proposed from the computational screening. Phenoxides have comparatively poorer correlation between [Formula: see text] and [Formula: see text], showing promise for optimization. We apply a genetic algorithm to search the chemical space of substituted phenoxides for the optimal sorbent. Several promising off-LSR candidates are discovered. The most promising one features bulky ortho substituents forcing the CO2 adduct into a perpendicular configuration with respect to the aromatic ring. In this configuration, the phenoxide binds CO2 and a proton using different molecular orbitals, thereby decoupling the [Formula: see text] and [Formula: see text]. The [Formula: see text] trend and off-LSR behaviors are then confirmed by experiments, validating the inverse molecular design framework. This work not only extensively studies the chemistry of the aqueous DAC, but also presents a transferrable computational workflow for understanding and optimization of other functional molecules.
Asunto(s)
Dióxido de Carbono , Técnicas de Química Analítica , Óxidos , Agua , Aminas , Dióxido de Carbono/química , Técnicas de Química Analítica/métodos , Óxidos/química , Protones , Agua/químicaRESUMEN
The dynamic restructuring of Cu has been observed under electrochemical conditions, and it has been hypothesized to underlie the unique reactivity of Cu toward CO2 electroreduction. Roughening is one of the key surface phenomena for Cu activation, whereby numerous atomic vacancies and adatoms form. However, the atomic structure of such surface motifs in the presence of relevant adsorbates has remained elusive. Here, we explore the chemical space of Cu surface restructuring under coverage of CO and H in realistic electroreduction conditions, by combining grand canonical DFT and global optimization techniques, from which we construct a potential-dependent grand canonical ensemble representation. The regime of intermediate and mixed CO and H coverageâwhere structures exhibit some elevated surface Cuâis thermodynamically unfavorable yet kinetically inevitable. Therefore, we develop a quasi-kinetic Monte Carlo simulation to track the system's evolution during a simulated cathodic scan. We reveal the evolution path of the system across coverage space and identify the accessible metastable structures formed along the way. Chemical bonding analysis is performed on the metastable structures with elevated Cu*CO species to understand their formation mechanism. By molecular dynamics simulations and free energy calculations, the surface chemistry of the Cu*CO species is explored, and we identify plausible mechanisms via which the Cu*CO species may diffuse or dimerize. This work provides rich atomistic insights into the phenomenon of surface roughening and the structure of involved species. It also features generalizable methods to explore the chemical space of restructuring surfaces with mixed adsorbates and their nonequilibrium evolution.
RESUMEN
The fundamental understanding of sluggish hydrogen evolution reaction (HER) kinetics on a platinum (Pt) surface in alkaline media is a topic of considerable debate. Herein, we combine cyclic voltammetry (CV) and electrical transport spectroscopy (ETS) approaches to probe the Pt surface at different pH values and develop molecular-level insights into the pH-dependent HER kinetics in alkaline media. The change in HER Tafel slope from â¼110 mV/decade in pH 7-10 to â¼53 mV/decade in pH 11-13 suggests considerably enhanced kinetics at higher pH. The ETS studies reveal a similar pH-dependent switch in the ETS conductance signal at around pH 10, suggesting a notable change of surface adsorbates. Fixed-potential calculations and chemical bonding analysis suggest that this switch is attributed to a change in interfacial water orientation, shifting from primarily an O-down configuration below pH 10 to a H-down configuration above pH 10. This reorientation weakens the O-H bond in the interfacial water molecules and modifies the reaction pathway, leading to considerably accelerated HER kinetics at higher pH. Our integrated studies provide an unprecedented molecular-level understanding of the nontrivial pH-dependent HER kinetics in alkaline media.
RESUMEN
Optimizing the electronic structure of electrocatalysts is of particular importance to enhance the intrinsic activity of active sites in water/seawater. Herein, a series of medium-entropy metal oxides of X(NiMo)O2/NF (X = Mn, Fe, Co, Cu and Zn) is designed via a rapid carbothermal shocking method. Among them, the optimized medium-entropy metal oxide (FeNiMo)O2/NF delivered remarkable HER performance, where the overpotentials as low as 110 and 141 mV are realized at 1000 mA cm-2 (@60 °C) in water and seawater. Meanwhile, medium-entropy metal oxide (FeNiMo)O2/NF only required overpotentials of as low as 330 and 380 mV to drive 1000 mA cm-2 for OER in water and seawater (@60 °C). Theoretical calculations showed that the multiple-metal synergistic effect in medium-entropy metal oxides can effectively enhance the d-p orbital hybridization of MoâO bond, reduce the energy barrier of H* adsorbed at the Mo sites. Meanwhile, Fe sites in medium-entropy metal oxide can act as the real OER active center, resulting in a good bifunctional activity. In all, this work provides a feasible strategy for the development of highly active and stable medium-entropy metal oxide electrocatalysts for ampere-level water/seawater splitting.
RESUMEN
In analogy to natural enzymes, an elaborated design of catalytic systems with a specifically tailored local chemical environment could substantially improve reaction kinetics, effectively combat catalyst poisoning effect and boost catalyst lifetime under unfavourable reaction conditions. Here we report a unique design of 'Ni(OH)2-clothed Pt-tetrapods' with an amorphous Ni(OH)2 shell as a water dissociation catalyst and a proton conductive encapsulation layer to isolate the Pt core from bulk alkaline electrolyte while ensuring efficient proton supply to the active Pt sites. This design creates a favourable local chemical environment to result in acidic-like hydrogen evolution reaction kinetics with a lowest Tafel slope of 27 mV per decade and a record-high specific activity and mass activity in alkaline electrolyte. The proton conductive Ni(OH)2 shell can also effectively reject impurity ions and retard the Oswald ripening, endowing a high tolerance to solution impurities and exceptional long-term durability that is difficult to achieve in the naked Pt catalysts. The markedly improved hydrogen evolution reaction activity and durability in an alkaline medium promise an attractive catalyst material for alkaline water electrolysers and renewable chemical fuel generation.
RESUMEN
Drought is one of the most severe environmental factors limiting plant growth and crop yield, necessitating the identification of genes that enhance drought resistance for crop improvement. Through screening an ethyl methyl sulfonate-mutagenized rice mutant library, we isolated the PEG tolerance mutant 97-1 (ptm97-1), which displays enhanced resistance to osmotic and drought stress, and increased yield under drought conditions. A point mutation in OsMATE6 was identified as being associated with the drought-resistant phenotype of ptm97-1. The role of OsMATE6 in conferring drought resistance was confirmed by additional OsMATE6 knockout mutants. OsMATE6 is expressed in guard cells, shoots and roots and the OsMATE6-GFP fusion protein predominantly localizes to the plasma membrane. Our ABA efflux assays suggest that OsMATE6 functions as an ABA efflux transporter; mutant protoplasts exhibited a slower ABA release rate compared to the wild type. We hypothesize that OsMATE6 regulates ABA levels in guard cells, influencing stomatal closure and enhancing drought resistance. Notably, OsMATE6 knockout mutants demonstrated greater yields under field drought conditions compared to wild-type plants, highlighting OsMATE6 as a promising candidate for improving crop drought resistance.
RESUMEN
Nickel anchored N-doped carbon electrocatalysts (Ni-N-C) are rapidly developed for the electrochemical reduction reaction of carbon dioxide (CO2RR). However, the high-performanced Ni-N-C analogues design for CO2RR remains bewilderment, for the reason lacking of definite guidance for its structure-activity relationship. Herein, the correlation between the proportion of nitrogen species derived from various nitrogen sources and the CO2RR activity of Ni-N-C is investigated. The x-ray photoelectron spectroscopy (XPS) spectrum combined with the CO2RR performance results show that pyridinic-N content has a positive correlation with CO2RR activity. Moreover, density functional theory (DFT) demonstrates that pyridinic-N coordinated Ni-N4sites offers optimized free energy and favorable selectivity towards CO2RR compared with pyrrolic-N. Accordingly, Ni-Na-C with highest pyridinic-N content (ammonia as nitrogen source) performs superior CO2RR activity, with the maximum carbon monoxide faradaic efficiency (FECO) of 99.8% at -0.88 V vs. RHE and the FECOsurpassing 95% within potential ranging of -0.88 to -1.38 V vs. RHE. The building of this parameter for CO2RR activity of Ni-N-C give instructive forecast for low-cost and highly active CO2RR electrocatalysts.
RESUMEN
Aiming to improve the photocatalytic activity in N2 fixation to produce ammonia, herein, we proposed a photochemical strategy to fabricate defects, and further deposition of Ru single atoms onto UiO-66 (Zr) framework. Electron-metal-support interactions (EMSI) were built between Ru single atoms and the support via a covalently bonding. EMSI were capable of accelerating charge transfer between Ru SAs and UiO-66, which was favorable for highly-efficiently photocatalytic activity. The photocatalytic production rate of ammonia improved from 4.57â µmol g-1 h-1 to 16.28â µmol g-1 h-1 with the fabrication of defects onto UiO-66, and further to 53.28â µmol g-1 h-1 with Ru-single atoms loading. From the DFT results, it was found that d-orbital electrons of Ru were donated to N2 πâ¶-antibonding orbital, facilitating the activation of the N≡N triple bond. A distal reaction pathway was probably occurred for the photocatalytic N2 reduction to ammonia on Ru1 /d-UiO-66 (single Ru sites decorated onto the nodes of defective UiO-66), and the first step of hydrogenation of N2 was the reaction determination step. This work shed a light on improving the photocatalytic activity via feasibly anchoring single atoms on MOF, and provided more evidences to understand the reaction mechanism in photocatalytic reduction of N2 .
RESUMEN
Boron-containing materials, such as hexagonal boron nitride (h-BN), recently shown to be active and selective catalysts for the oxidative dehydrogenation of propane (ODHP), have been shown to undergo significant surface oxyfunctionalization and restructuring. Although experimental ex situ studies have probed the change in chemical environment on the surface, the structural evolution of it under varying reaction conditions has not been established. Herein, we perform global optimization structure search with a grand canonical genetic algorithm to explore the chemical space of off-stoichiometric restructuring of the h-BN surface under ambient as well as ODHP-relevant conditions. A grand canonical ensemble representation of the surface is established, and the predicted 11B solid-state NMR spectra are consistent with previous experimental reports. In addition, we investigated the relative sliding of h-BN sheets and how it influences the surface chemistry with ab initio molecular dynamics simulations. The B-O linkages on the edges are found to be significantly strained during the sliding, causing the metastable sliding configurations to have higher reactivity toward the activation of propane and water.
RESUMEN
The design of active and low-cost electrocatalyst for hydrogen evolution reaction (HER) is the key to achieving a clean hydrogen energy infrastructure. The most successful design principle of hydrogen electrocatalyst is the activity volcano plot, which is based on Sabatier principle and has been used to understand the exceptional activity of noble metal and design of metal alloy catalysts. However, this application of volcano plot in designing single-atom electrocatalysts (SAEs) on nitrogen doped graphene (TM/N4C catalysts) for HER has been less successful due to the nonmetallic nature of the single metal atom site. Herein, by performing ab initio molecular dynamics simulations and free energy calculations on a series of SAEs systems (TM/N4C with TM = 3d, 4d, or 5d metals), we find that the strong charge-dipole interaction between the negatively charged *H intermediate and the interfacial H2O molecules could alter the transition path of the acidic Volmer reaction and dramatically raise its kinetic barrier, despite its favorable adsorption free energy. Such kinetic hindrance is also experimentally confirmed by electrochemical measurements. By combining the hydrogen adsorption free energy and the physics of competing interfacial interactions, we propose a unifying design principle for engineering the SAEs used for hydrogen energy conversion, which incorporates both thermodynamic and kinetic considerations and allows going beyond the activity volcano model.
RESUMEN
Hexagonal boron nitride (hBN) is a highly selective catalyst for the oxidative dehydrogenation of propane (ODHP) to propylene. Using a variety of ex situ characterization techniques, the activity of the catalyst has been attributed to the formation of an amorphous boron oxyhydroxide surface layer. The ODHP reaction mechanism proceeds via a combination of surface mediated and gas phase propagated radical reactions with the relative importance of both depending on the surface-to-void-volume ratio. Here we demonstrate the unique capability of operando X-ray Raman spectroscopy (XRS) to investigate the oxyfunctionalization of the catalyst under reaction conditions (1 mm outer diameter reactor, 500 to 550 °C, P = 30 kPa C3H8, 15 kPa O2, 56 kPa He). We probe the effect of a water cofeed on the surface of the activated catalyst and find that water removes boron oxyhydroxide from the surface, resulting in a lower reaction rate when the surface reaction dominates and an enhanced reaction rate when the gas phase contribution dominates. Computational description of the surface transformations at an atomic-level combined with high precision XRS spectra simulations with the OCEAN code rationalize the experimental observations. This work establishes XRS as a powerful technique for the investigation of light element-containing catalysts under working conditions.
RESUMEN
The Li-CO2 battery has great potential for both CO2 utilization and energy storage, but its practical application is limited by low energy efficiency and short cycle life. Efficient cathode catalysts are needed to address this issue. Herein, this work reports on molecularly dispersed electrocatalysts (MDEs) of nickel phthalocyanine (NiPc) anchored on carbon nanotubes (CNTs) as the cathode catalyst for Li-CO2 batteries. The dispersed NiPc molecules efficiently catalyze CO2 reduction, while the conductive and porous CNTs networks facilitate CO2 evolution reaction, leading to enhanced discharging and charging performance compared to the NiPc and CNTs mixture. Octa-cyano substitution on NiPc (NiPc-CN) further enhances the interaction between the molecule and CNTs, resulting in better cycling stability. The Li-CO2 battery with the NiPc-CN MDE cathode shows a high discharge voltage of 2.72 V and a small discharging-charging potential gap of 1.4 V, and can work stably for over 120 cycles. The reversibility of the cathode is confirmed by experimental characterizations. This work lays a foundation for the development of molecular catalysts for Li-CO2 battery cathodes.
RESUMEN
Rice panicles, a major component of yield, are regulated by phytohormones and nutrients. How mineral nutrients promote panicle architecture remains largely unknown. Here, we report that NIN-LIKE PROTEIN3 and 4 (OsNLP3/4) are crucial positive regulators of rice panicle architecture in response to nitrogen (N). Loss-of-function mutants of either OsNLP3 or OsNLP4 produced smaller panicles with reduced primary and secondary branches and fewer grains than wild-type, whereas their overexpression plants showed the opposite phenotypes. The OsNLP3/4-regulated panicle architecture was positively correlated with N availability. OsNLP3/4 directly bind to the promoter of OsRFL and activate its expression to promote inflorescence meristem development. Furthermore, OsRFL activates OsMOC1 expression by binding to its promoter. Our findings reveal the novel N-responsive OsNLP3/4-OsRFL-OsMOC1 module that integrates N availability to regulate panicle architecture, shedding light on how N nutrient signals regulate panicle architecture and providing candidate targets for the improvement of crop yield.
Asunto(s)
Oryza , Oryza/metabolismo , Inflorescencia/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Developing improved methods for CO2 capture and concentration (CCC) is essential to mitigating the impact of our current emissions and can lead to carbon net negative technologies. Electrochemical approaches for CCC can achieve much higher theoretical efficiencies compared to the thermal methods that have been more commonly pursued. The use of redox carriers, or molecular species that can bind and release CO2 depending on their oxidation state, is an increasingly popular approach as carrier properties can be tailored for different applications. The key requirements for stable and efficient redox carriers are discussed in the context of chemical scaling relationships and operational conditions. Computational and experimental approaches towards developing redox carriers with optimal properties are also described.
Asunto(s)
Dióxido de Carbono , Carbono , Dióxido de Carbono/química , Oxidación-ReducciónRESUMEN
The dynamic restructuring of Cu surfaces in electroreduction conditions is of fundamental interest in electrocatalysis. We decode the structural dynamics of a Cu(111) electrode under reduction conditions by joint first-principles calculations and operando electrochemical scanning tunneling microscopy (ECSTM) experiments. Combining global optimization and grand canonical density functional theory, we unravel the potential- and pH-dependent restructuring of Cu(111) in acidic electrolyte. At reductive potential, Cu(111) is covered by a high density of H atoms and, below a threshold potential, Cu adatoms are formed on the surface in a (4×4) superstructure, a restructuring unfavorable in vacuum. The strong H adsorption is the driving force for the restructuring, itself induced by the electrode potential. On the restructured surface, barriers for hydrogen evolution reaction steps are low. Restructuring in electroreduction conditions creates highly active Cu adatom sites not present on Cu(111).
RESUMEN
We report the size-dependent activity and stability of supported Pt1,4,7,8 for electrocatalytic hydrogen evolution reaction, and show that clusters outperform polycrystalline Pt in activity, with size-dependent stability. To understand the size effects, we use DFT calculations to study the structural fluxionality under varying potentials. We show that the clusters can reshape under H coverage and populate an ensemble of states with diverse stoichiometry, structure, and thus reactivity. Both experiment and theory suggest that electrocatalytic species are hydridic states of the clusters (≈2â H/Pt). An ensemble-based kinetic model reproduces the experimental activity trend and reveals the role of metastable states. The stability trend is rationalized by chemical bonding analysis. Our joint study demonstrates the potential- and adsorbate-coverage-dependent fluxionality of subnano clusters of different sizes and offers a systematic modeling strategy to tackle the complexities.
RESUMEN
The rearrangement of Cu surfaces under electrochemical conditions is known to play a key role in the surface activation for major electrocatalytic reactions. Despite the extensive experimental insights into such rearrangements, from surface-sensitive spectroscopy and microscopy, the spatial and temporal resolution of these methods is insufficient to provide an atomistic picture of the electrochemical interface. Theoretical characterization has also been challenged by the diversity of restructuring configurations, surface stoichiometry, adsorbate configurations, and the effect of the electrode potential. Here, atomistic insight into the restructuring of the electrochemical interface is gained from first principles. Cu(100) restructuring under varying applied potentials and adsorbate coverages is studied by grand canonical density functional theory and global optimization techniques, as well as ab initio molecular dynamics and mechanistic calculations. We show that electroreduction conditions cause the formation of a shifted-row reconstruction on Cu(100), induced by hydrogen adsorption. The reconstruction is initiated at 1/6 ML H coverage, when the Cu-H bonding sufficiently weakens the Cu-Cu bonds between the top- and sublayer, and further stabilized at 1/3 ML when H adsorbates fill all the created 3-fold hollow sites. The simulated scanning tunneling microscopy (STM) images of the calculated reconstructed interfaces agree with experimental in situ STM. However, compared to the thermodynamic prediction, the onsets of reconstruction events in the experiment occur at more negative applied voltages. This is attributed to kinetic effects in restructuring, which we describe via different statistical models, to produce the potential- and pH-dependent surface stability diagram. This manuscript provides rich atomistic insight into surface restructuring in electroreduction conditions, which is required for the understanding and design of Cu-based materials for electrocatalytic processes. It also offers the methodology to study the problem of in situ electrode reconstruction.
RESUMEN
Nitrate is an essential nutrient and an important signaling molecule in plants. However, the molecular mechanisms by which plants perceive nitrate deficiency signaling are still not well understood. Here we report that AtNLP7 protein transport from the nucleus to the cytoplasm in response to nitrate deficiency is dependent on the N-terminal GAF domain. With the deletion of the GAF domain, AtNLP7ΔGAF always remains in the nucleus regardless of nitrate availability. AtNLP7 ΔGAF also shows reduced activation of nitrate-induced genes due to its impaired binding to the nitrate-responsive cis-element (NRE) as well as decreased growth like nlp7-1 mutant. In addition, AtNLP7ΔGAF is unable to mediate the reduction of reactive oxygen species (ROS) accumulation upon nitrate treatment. Our investigation shows that the GAF domain of AtNLP7 plays a critical role in the sensing of nitrate deficiency signal and in the nitrate-triggered ROS signaling process.