Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 160(3): 392-411, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837397

RESUMEN

TBC1Domain Family Member 25 (TBC1D25) is a protein that contains a TBC/RAB-GTPase activating protein (GAP) domain, which was shown to participate in autophagy in previous studies. However, the role of TBC1D25 in cerebral ischemia-reperfusion (I/R) injury remains unknown. In this study, we found that the mRNA and protein expression levels of TBC1D25 decreased in mouse brain after I/R injury and primary cortical neurons treated with oxygen and glucose deprivation/reoxygenation (OGD/R). Then TBC1D25 knockout (KO) mice were applied to demonstrate that TBC1D25 ablation aggravated cerebral I/R-induced neuronal loss and infarct size. In addition, neuronal apoptosis and inflammation were significantly potentiated in the TBC1D25-KO group. In in vitro OGD/R model, TBC1D25 knockdown can attenuate neuronal cell viability and aggravate the process of inflammation and apoptosis. Conversely, over-expression of TBC1D25 in primary neurons ameliorated the aforementioned processes. Mechanistically, RNA-sequencing (RNA-seq) analysis revealed mitogen-activated protein kinase (MAPK) signaling pathway was the most significant pathway that contributed to TBC1D25-mediated brain I/R injury process. Through experimental verification, TBC1D25 deficiency increased the phosphorylation of the transforming growth factor-ß-activated kinase 1 (TAK1)-c-Jun N-terminal kinase (JNK)/p38 axis in neurons during the brain I/R injury. Furthermore, we found that TAK1 blockade abrogated the apoptosis and inflammatory response produced by TBC1D25 knockdown in vitro. In conclusion, this study is the first to demonstrate the functional significance of TBC1D25 in the pathophysiology of brain I/R injury, and the protective mechanism of TBC1D25 is dependent on the TAK1-JNK/p38 pathway.


Asunto(s)
Isquemia Encefálica/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Quinasas Quinasa Quinasa PAM/genética , Daño por Reperfusión/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Apoptosis , Isquemia Encefálica/fisiopatología , Proteínas Activadoras de GTPasa/deficiencia , Glucosa/deficiencia , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/fisiopatología , Inflamación/genética , Inflamación/patología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , RNA-Seq , Daño por Reperfusión/fisiopatología
2.
Neurosurg Rev ; 45(6): 3717-3728, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36169785

RESUMEN

Recent studies have demonstrated that hyperglycemia may result in a poor prognosis following aneurysmal subarachnoid hemorrhage (aSAH). However, the association between hyperglycemia and the clinical outcome of aSAH has not been clearly established thus far. Therefore, we performed a systematic review and meta-analysis to investigate the association between hyperglycemia and the development of aSAH. We completed a literature search in four databases (PubMed, EMBASE, Cochrane Library, and Web of Science) up to November 1, 2021, including all eligible studies investigating the prognostic value of hyperglycemia in patients with aSAH. We performed a quality assessment of included studies using the Newcastle-Ottawa Quality Assessment Scale. The pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated to assess the association of hyperglycemia in aneurysmal subarachnoid hemorrhage. A total of 35 studies with 11,519 patients were finally included in the meta-analysis. Nineteen studies reported the association between hyperglycemia and poor outcome, 12 studies reported the association between hyperglycemia and all-cause mortality, 7 studies reported the association between hyperglycemia and cerebral vasospasm, and 9 studies reported the association between hyperglycemia and cerebral infarction. The pooled data of these studies suggested that hyperglycemia was significantly associated with poor functional outcomes (odds ratio [OR], 1.29; 95% confidence interval [CI], 1.17-1.42; P < 0.00001; I2 = 83%), all-cause mortality (OR, 1.02; 95% CI, 1.01-1.04; P = 0.0006; I2 = 89%), cerebral vasospasm (OR, 1.02; 95% CI, 1.01-1.02; P = 0.0002; I2 = 35%), and cerebral infarction (OR, 1.16; 95% CI, 1.09-1.23; P < 0.00001; I2 = 10%) in aSAH patients. These findings suggested that assessing for hyperglycemia at admission may help clinicians to identify critically ill patients and complete patient stratification early, which may achieve better management and improve the prognosis of patients with aSAH.


Asunto(s)
Hiperglucemia , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico , Hemorragia Subaracnoidea/cirugía , Vasoespasmo Intracraneal/etiología , Pronóstico , Infarto Cerebral/complicaciones , Hiperglucemia/complicaciones
3.
Molecules ; 26(9)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064401

RESUMEN

Hydrogel adhesives are attractive for applications in intelligent soft materials and tissue engineering, but conventional hydrogels usually have poor adhesion. In this study, we designed a strategy to synthesize a novel adhesive with a thin hydrogel adhesive layer integrated on a tough substrate hydrogel. The adhesive layer with positive charges of ammonium groups on the polymer backbones strongly bonds to a wide range of nonporous materials' surfaces. The substrate layer with a dual hydrogen bond system consists of (i) weak hydrogen bonds between N,N-dimethyl acrylamide (DMAA) and acrylic acid (AAc) units and (ii) strong multiple hydrogen bonds between 2-ureido-4[1H]-pyrimidinone (UPy) units. The dual hydrogen-bond network endowed the hydrogel adhesives with unique mechanical properties, e.g., toughness, highly stretchability, and insensitivity to notches. The hydrogel adhesion to four types of materials like glass, 316L stainless steel, aluminum, Al2O3 ceramic, and two biological tissues including pig skin and pig kidney was investigated. The hydrogel bonds strongly to dry solid surfaces and wet tissue, which is promising for biomedical applications.


Asunto(s)
Hidrogeles/química , Acrilamidas/química , Acrilatos/química , Adhesividad , Animales , Enlace de Hidrógeno , Porcinos
4.
J Cell Sci ; 128(12): 2302-13, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25967549

RESUMEN

G-protein-coupled receptors (GPCRs) are key players in cell signaling, and their cell surface expression is tightly regulated. For many GPCRs such as ß2-AR (ß2-adrenergic receptor), receptor activation leads to downregulation of receptor surface expression, a phenomenon that has been extensively characterized. By contrast, some other GPCRs, such as GABA(B) receptor, remain relatively stable at the cell surface even after prolonged agonist treatment; however, the underlying mechanisms are unclear. Here, we identify the small GTPase Rap1 as a key regulator for promoting GABA(B) receptor surface expression. Agonist stimulation of GABA(B) receptor signals through Gαi/o to inhibit Rap1GAPII (also known as Rap1GAP1b, an isoform of Rap1GAP1), thereby activating Rap1 (which has two isoforms, Rap1a and Rap1b) in cultured cerebellar granule neurons (CGNs). The active form of Rap1 is then recruited to GABA(B) receptor through physical interactions in CGNs. This Rap1-dependent signaling cascade promotes GABA(B) receptor surface expression by stimulating receptor recycling. Our results uncover a new mechanism regulating GPCR surface expression and also provide a potential explanation for the slow, long-lasting inhibitory action of GABA neurotransmitter.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis/fisiología , Neuronas/metabolismo , Receptores de GABA-B/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Secuencia de Aminoácidos , Animales , Biotinilación , Western Blotting , Células Cultivadas , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Datos de Secuencia Molecular , Neuronas/citología , Fosforilación , Homología de Secuencia de Aminoácido , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Cell Mol Neurobiol ; 37(5): 919-929, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27678140

RESUMEN

The CD4+CD25+ regulatory T cells (Tregs), an innate immunomodulator, suppress cerebral inflammation and maintain immune homeostasis in multiple central nervous system injury, but its role in intracerebral hemorrhage (ICH) has not been fully characterized. This study investigated the effect of Tregs on brain injury using the mouse ICH model, which is established by autologous blood infusion. The results showed that tail intravenous injection of Tregs significantly reduced brain water content and Evans blue dye extravasation of perihematoma at day (1, 3 and 7), and improved short- and long-term neurological deficits following ICH in mouse model. Tregs treatment reduced the content of pro-inflammatory cytokines interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, and malondialdehyde, while increasing the superoxide dismutase (SOD) enzymatic activity at day (1, 3 and 7) following ICH. Furthermore, Tregs treatment obviously reduced the number of NF-κB+, IL-6+, TUNEL+ and active caspase-3+ cells at day 3 after ICH. These results indicate that adoptive transfer of Tregs may provide neuroprotection following ICH in mouse models.


Asunto(s)
Traslado Adoptivo , Hemorragia Cerebral/inmunología , Hemorragia Cerebral/terapia , Hematoma/inmunología , Hematoma/terapia , Inflamación/patología , Linfocitos T Reguladores/inmunología , Animales , Apoptosis , Barrera Hematoencefálica/patología , Hemorragia Cerebral/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hematoma/complicaciones , Hematoma/patología , Masculino , Malondialdehído/metabolismo , Ratones Endogámicos C57BL , Superóxido Dismutasa/metabolismo , Factor de Transcripción ReIA/metabolismo
6.
Neurochem Res ; 42(2): 541-551, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27868153

RESUMEN

Carnosine, an endogenous dipeptide (ß-alanyl-L-histidine), exerts multiple neuroprotective properties, but its role in intracerebral hemorrhage (ICH) remains unclear. This study investigates the effect of Carnosine on brain injury using the rat ICH model, which is established by type IV collagenase caudatum infusion. The results indicate that intraperitoneal administration of Carnosine (1000 mg/kg) significantly attenuates brain edema, blood-brain barrier (BBB) disruption, oxidative stress, microglia activation and neuronal apoptosis of perihematoma at 72 h following ICH in rats models, as convinced by preventing the disruption of tight junction protein ZO-1, occludin and claudin-5, followed by the decrease of ROS, MDA, 3-NT, 8-OHDG level and the increase of GSH-Px and SOD activity, then followed by the decline of Iba-1, ED-1, active caspase-3 and TUNEL positive cells and the decrease of IL-1ß, IL-6, TNF-α, active caspase-3 and cytochrome c level. Our results suggest that Carnosine may provide neuroprotective effect after experimental ICH in rat models.


Asunto(s)
Apoptosis/fisiología , Encéfalo/metabolismo , Carnosina/uso terapéutico , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Estrés Oxidativo/fisiología , Animales , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Carnosina/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
7.
Cell Mol Neurobiol ; 36(5): 647-55, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26224360

RESUMEN

Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1ß and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application.


Asunto(s)
Apoptosis/efectos de los fármacos , Edema Encefálico/cirugía , Hemorragia Cerebral/complicaciones , Procedimientos Quirúrgicos Mínimamente Invasivos , Animales , Lesiones Encefálicas/cirugía , Hemorragia Cerebral/terapia , Inflamación/cirugía , Masculino , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Neuronas/metabolismo , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Irrigación Terapéutica/métodos
8.
Cell Mol Neurobiol ; 35(2): 147-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25179154

RESUMEN

Carnosine (ß-alanyl-L-histidine) has been demonstrated to provide antioxidative and anti-apoptotic roles in the animal of ischemic brain injuries and neurodegenerative diseases. The aim of this study was to examine whether carnosine prevents subarachnoid hemorrhage (SAH)-induced early brain injury (EBI) in rats. We found that intraperitoneal administration of carnosine improved neurobehavioral deficits, attenuated brain edema and blood-brain barrier permeability, and decreased reactive oxygen species level at 48 h following SAH in rat models. Carnosine treatment increased tissue copper/zinc superoxide dismutase (CuZn-SOD) and glutathione peroxidase (GSH-Px) enzymatic activities, and reduced post-SAH elevated lactate dehydrogenase (LDH) activity, the concentration of malondialdehyde (MDA), 3-nitrotyrosine (3-NT), 8-hydroxydeoxyguanosine (8-OHDG), interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) in rats. Furthermore, carnosine treatment attenuated SAH-induced microglia activation and cortical neuron apoptosis. These results indicated that administration of carnosine may provide neuroprotection in EBI following SAH in rat models.


Asunto(s)
Antioxidantes/uso terapéutico , Apoptosis , Lesiones Encefálicas/tratamiento farmacológico , Carnosina/uso terapéutico , Hemorragia Subaracnoidea/tratamiento farmacológico , Animales , Antígenos Nucleares/metabolismo , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Conducta Animal , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Edema Encefálico/complicaciones , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/patología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Carnosina/farmacología , Caspasa 3/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Citocinas/metabolismo , ADN/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Glutatión Peroxidasa/metabolismo , Etiquetado Corte-Fin in Situ , Lípidos/química , Masculino , Microglía/efectos de los fármacos , Microglía/patología , Proteínas del Tejido Nervioso/metabolismo , Oxidación-Reducción/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/patología , Superóxido Dismutasa/metabolismo
9.
Cell Mol Neurobiol ; 35(4): 543-53, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25527033

RESUMEN

Oxidative stress plays an important role in the pathogenesis of early brain injury (EBI) following subarachnoid hemorrhage (SAH). The aim of this study was to assess whether cysteamine prevents post-SAH oxidative stress injury via its antioxidative and anti-apoptotic effects. It was observed that intraperitoneal administration of cysteamine (20 mg/kg/day) could significantly alleviate EBI (including neurobehavioral deficits, brain edema, blood-brain barrier permeability, and cortical neuron apoptosis) after SAH in rats. Meanwhile, cysteamine treatment reduced post-SAH elevated the reactive oxygen species level, the concentration of malondialdehyde, 3-nitrotyrosine, and 8-hydroxydeoxyguanosine and increased the glutathione peroxidase enzymatic activity, the concentration of glutathione and brain-derived neurotrophic factor in brain cortex at 48 h after SAH. These results indicated that administration of cysteamine may ameliorate EBI and provide neuroprotection after SAH in rat models.


Asunto(s)
Apoptosis , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Cisteamina/uso terapéutico , Estrés Oxidativo , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/patología , Animales , Apoptosis/efectos de los fármacos , Conducta Animal , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Edema Encefálico/complicaciones , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/patología , Lesiones Encefálicas/complicaciones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Caspasa 3/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Cisteamina/farmacología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Etiquetado Corte-Fin in Situ , Masculino , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Hemorragia Subaracnoidea/complicaciones
10.
Cell Mol Neurobiol ; 35(7): 995-1001, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25895624

RESUMEN

Cisplatin-based chemotherapy in clinic is severely limited by its adverse effect, including neurotoxicity. Oxidative damage contributes to cisplatin-induced neurotoxicity, but the mechanism remains unclearly. Cyanidin, a natural flavonoid compound, exhibits powerful antioxidant activity. Hence, we investigated the protective effects of cyanidin on PC12 cells against cisplatin-induced neurotoxicity and explored the underlying mechanisms. The results showed that cisplatin-induced cytotoxicity was completely reversed by cyanidin through inhibition of PC12 cell apoptosis, as proved by the attenuation of Sub-G1 peak, PARP cleavage, and caspases-3 activation. Mechanistically, cyanidin significantly inhibited reactive oxygen species (ROS)-induced DNA damage in cisplatin-treated PC12 cells. Our findings revealed that cyanidin as an apoptotic inhibitor effectively blocked cisplatin-induced neurotoxicity through inhibition of ROS-mediated DNA damage and apoptosis, predicating its therapeutic potential in prevention of chemotherapy-induced neurotoxicity. Cisplatin caused DNA damage, activated p53, and subsequently induced PC12 cells apoptosis by triggering ROS overproduction. However, cyanidin administration effectively inhibited DNA damage, attenuated p53 phosphorylation, and eventually reversed cisplatin-induced PC12 cell apoptosis through inhibition ROS accumulation.


Asunto(s)
Antocianinas/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Cisplatino/toxicidad , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Células PC12 , Ratas
11.
Neurochem Res ; 40(6): 1121-32, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25846008

RESUMEN

Activation of metabotropic glutamate receptor 5 (mGluR5) provided neuroprotection in multiple central nervous system injury, but the roles of mGluR5 in subarachnoid hemorrhage (SAH) remain unclear. In present study, we aimed to evaluate whether activation of mGluR5 attenuates early brain injury (EBI) after experimental SAH in rats. We found that selective mGluR5 orthosteric agonist CHPG or positive allosteric modulator VU0360172 administration significantly improves neurological function and attenuates brain edema at 24 h after SAH. Furthermore, mGluR5 obviously expresses in activated microglia (ED-1 positive) after SAH. CHPG or VU0360172 administration significantly reduces the numbers of activated microglia and the protein and mRNA levels of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α at 24 h after SAH. Moreover, CHPG or VU0360172 administration obviously reduces the number of TUNEL-positive cells and active caspase-3/NeuN-positive neurons in cortex at 24 h after SAH. CHPG or VU0360172 administration significantly up-regulates the expression of Bcl-2, and down-regulates the expression of Bax and active caspase-3, which in turn increases the ratio of Bcl-2/Bax. Our results indicate that activation of mGluR5 attenuates microglial activation and neuronal apoptosis, and improves neurological function in EBI after SAH.


Asunto(s)
Apoptosis/efectos de los fármacos , Microglía/patología , Neuronas/patología , Receptor del Glutamato Metabotropico 5/metabolismo , Hemorragia Subaracnoidea/patología , Animales , Conducta Animal/efectos de los fármacos , Edema Encefálico/prevención & control , Caspasa 3/biosíntesis , Caspasa 3/genética , Corteza Cerebral/patología , Ciclina D1/biosíntesis , Ciclina D1/genética , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Agonistas de Aminoácidos Excitadores/uso terapéutico , Glicina/análogos & derivados , Glicina/uso terapéutico , Activación de Macrófagos/efectos de los fármacos , Masculino , Fenilacetatos/uso terapéutico , Ratas , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/mortalidad , Hemorragia Subaracnoidea/psicología , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/genética
12.
J Huazhong Univ Sci Technolog Med Sci ; 35(1): 64-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25673195

RESUMEN

Systemic lupus erythematosus (SLE) and clear cell renal cell carcinoma (CC-RCC) are serious disorders and usually fatal, and always accompanied with pathological changes in the kidney. Signal-induced proliferation-associated protein 1 (SIPA-1) is a Rap1GTPase activating protein (Rap1GAP) expressed in the normal distal and collecting tubules of the murine kidney. Lupus-like autoimmune disease and leukemia have been observed in SIPA-1 deficient mice, suggesting a pathological relevance of SIPA-1 to SLE and carcinoma in human being. The expression pattern of SIPA-1 is as yet undefined and the pathogenesis of these diseases in humans remains elusive. In this study, we used both immunohistochemistry and quantum dot (QD)-based immunofluorescence staining to investigate the expression of SIPA-1 in renal specimens from SLE and CC-RCC patients. MTT assay and Western blotting were employed to evaluate the effects of SIPA-1 overexpression on the proliferation and apoptosis of renal cell lines. Semi-quantitative reverse transcriptase-PCR (RT-PCR) was applied to examine the changes of hypoxia-inducible factor-1α (HIF-1α) mRNA level. Results showed that SIPA-1 was highly expressed in the proximal and collecting tubules of nephrons in SLE patients compared to normal ones, and similar results were obtained in the specimens of CC-RCC patients. Although SIPA-1 overexpression did not affect cellular proliferation and apoptosis of both human 786-O renal cell carcinoma cells and rat NRK-52E renal epithelial cell lines, RT-PCR results showed that HIF-1α mRNA level was down-regulated by SIPA-1 overexpression in 786-O cells. These findings suggest that SIPA-1 may play critical roles in the pathological changes in kidney, and might provide a new biomarker to aid in the diagnosis of SLE and CC-RCC.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Túbulos Renales Proximales/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Proteínas Nucleares/metabolismo , Apoptosis , Secuencia de Bases , Línea Celular , Proliferación Celular , Cartilla de ADN , Humanos , Túbulos Renales Proximales/patología , Lupus Eritematoso Sistémico/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Sci Data ; 11(1): 449, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702307

RESUMEN

In the context of China's freshwater crisis high-resolution data are critical for sustainable water management and economic growth. Yet there is a dearth of data on water withdrawal and scarcity regardless of whether total or subsector amount, for prefectural cities. In administrative and territorial scope, we accounted for water withdrawal of all 63 economic-socio-environmental sectors for all 343 prefectural cities in China, based on a general framework and 2015 data. Spatial and economic-sector resolution is improved compared with previous studies by partitioning general sectors into industrial and agricultural sub-sectors. Construction of these datasets was based on selection of 16 driving forces. We connected a size indicator with corresponding water-withdrawal efficiency. We further accounted for total blue-water withdrawal and quantitative water scarcity status. Then we compared different scopes and methods of official accounts and statistics from various water datasets. These disaggregated and complete data could be used in input-output models for municipal design and governmental planning to help gain in-depth insights into subsector water-saving priorities from local economic activities.

16.
Biotechnol Lett ; 35(6): 879-85, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23479410

RESUMEN

Enzymatic polymerization can offer metal-free routes to polymer materials that could be used in biomedical applications. To take advantage of the unique properties of ionic liquids (ILs) for enzyme stability, monocationic ionic liquid (MIL) and dicationic ionic liquid (DIL) were used to promote the ring-opening polymerization of ε-caprolactone (ε-CL) using Candida antarctica lipase B as catalyst. Considering the molecular weight (M n ) and reaction yield of the resulting polymer (PCL), high density and viscosity of ILs would be good, especially in the case of DIL. With the same total alkyl chain length, the density and viscosity of [C4(C6Im)2][PF6]2 were higher than that of [C12MIm][PF6]. Using a lipase/CL/ILs ratio of 1:20:20 (by wt) for 48 h at 90 °C, the highest M n and reaction yield of PCL were 26,200 g/mol and 62 % with [C4(C6Im)2][PF6]2, while the M n and reaction yield of PCL obtained in [C12MIm][PF6] were 11,700 g/mol and 37 %.


Asunto(s)
Candida/enzimología , Líquidos Iónicos , Lipasa/metabolismo , Poliésteres/metabolismo , Biotecnología/métodos , Poliésteres/química , Viscosidad
17.
Biotechnol Lett ; 35(10): 1623-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23708876

RESUMEN

Polycaprolactone (PCL) was synthesized by ring-opening polymerization of ε-caprolactone through two different enzymatic processes. The lipase from Candida antarctica B, immobilized on macroporous acrylic acid beads, was employed either untreated or coated with small amounts of ionic liquids (ILs). Monocationic ionic liquids, [C(n)MIm][NTf2] (n = 2, 6, 12), as well as a dicationic ionic liquid, ([C4(C6Im)2][NTf2]2), were used to coat the immobilized lipase and also as the reaction medium. In both methods, the polarity, anion of the ILs concentration and viscosity strongly influenced the reaction. Coating the immobilized enzyme with ILs improved catalytic activity and less ILs was required to produce PCL with a higher molecular weight and reaction yield. At 60 °C and ILs/Novozyme-435 coating ratio of 3:1 (w/w) for 48 h, the highest M(w) and reaction yield of PCL were 35,600 g/mol and 62% in the case of [C12MIm][NTf2], while the M(w) and reaction yield of PCL was 20,300 g/mol and 54 % with [C12MIm][NTf2] and catalyzed by untreated lipase.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Poliésteres/metabolismo , Líquidos Iónicos/química , Peso Molecular , Poliésteres/química
18.
ACS Omega ; 8(22): 19692-19704, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305289

RESUMEN

Extracellular signal-regulated kinase 1 and 2 (Erk1/2) signaling has been shown to be involved in brain injury after subarachnoid hemorrhage (SAH). A first-in-human phase I study reported that ravoxertinib hydrochloride (RAH), a novel Erk1/2 inhibitor, has an acceptable safety profile and pharmacodynamic effects. Here, we showed that the level of Erk1/2 phosphorylation (p-Erk1/2) was significantly increased in the cerebrospinal fluid (CSF) of aneurysmal subarachnoid hemorrhage (aSAH) patients who developed poor outcomes. In a rat SAH model that was produced by the intracranial endovascular perforation method, western blot observed that the level of p-Erk1/2 was also increased in the CSF and basal cortex, showing a similar trend with aSAH patients. Immunofluorescence and western blot indicated that RAH treatment (i.c.v injection, 30 min post-SAH) attenuates the SAH-induced increase of p-Erk1/2 at 24 h in rats. RAH treatment can improve experimental SAH-induced long-term sensorimotor and spatial learning deficits that are evaluated by the Morris water maze, rotarod test, foot-fault test, and forelimb placing test. Moreover, RAH treatment attenuates neurobehavioral deficits, the blood-brain barrier damage, and cerebral edema at 72 h after SAH in rats. Furthermore, RAH treatment decreases the SAH-elevated apoptosis-related factor active caspase-3 and the necroptosis-related factor RIPK1 expression at 72 h in rats. Immunofluorescence analysis showed that RAH attenuated neuronal apoptosis but not neuronal necroptosis in the basal cortex at 72 h after SAH in rats. Altogether, our results suggest that RAH improves long-term neurologic deficits through early inhibition of Erk1/2 in experimental SAH.

19.
Front Pharmacol ; 13: 848529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529450

RESUMEN

Edaravone dexborneol is a novel neuroprotective drug that comprises edaravone and (+)-borneol in a 4:1 ratio. Phase II and III studies have demonstrated that Chinese patients treated with edaravone dexborneol within 48 h of AIS onset have better functional outcomes than those treated with edaravone alone. However, the effect of edaravone dexborneol on subarachnoid hemorrhage (SAH) has not yet been elucidated. This study aimed to investigate the therapeutic effects of edaravone dexborneol on SAH-induced brain injury and long-term behavioral deficits and to explore the possible mechanisms. The experimental rat SAH model was induced by an intraluminal puncture of the left middle cerebral artery (MCA). Edaravone dexborneol or edaravone at a clinical dose was infused into the tail vein for 3 days post-SAH surgery. Behavioral outcomes were assessed by a modified Garcia scoring system and rotarod, foot-fault, and corner tests. Immunofluorescence, Western blot, and ELISA methods were used to evaluate neuronal damage and oxidative stress. Our results showed that a post-SAH therapeutic regimen with edaravone dexborneol helped improve neurological function up to 21 days after SAH surgery and demonstrated a greater beneficial effect than edaravone alone, accompanied by an obvious inhibition of neuronal apoptosis in the CA1 hippocampus and basal cortex regions. Mechanistically, edaravone dexborneol not only suppressed the lipid peroxidation product malondialdehyde (MDA) but also improved the total antioxidant capability (TAC) 3 days after SAH. Notably, edaravone dexborneol treatment significantly inhibited the expression of another lipid peroxidation product, 4-hydroxynonenal (4-HNE), in the CA1 hippocampus and basal cortex, which are vital participants in the process of neuronal oxidative damage and death after SAH because of their acute cytotoxicity. Together, our results demonstrate that edaravone dexborneol confers neuroprotection and stabilizes long-term behavioral ability after SAH injury, possibly by suppressing 4-HNE-associated oxidative stress. These results may help develop new clinical strategies for SAH treatment.

20.
Front Mol Neurosci ; 15: 971361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046710

RESUMEN

Lysosomal-associated transmembrane protein 5 (LAPTM5) has been demonstrated to be involved in regulating immunity, inflammation, cell death, and autophagy in the pathophysiological processes of many diseases. However, the function of LAPTM5 in cerebral ischemia-reperfusion (I/R) injury has not yet been reported. In this study, we found that LAPTM5 expression was dramatically decreased during cerebral I/R injury both in vivo and in vitro. LAPTM5 knockout (KO) mice were compared with a control, and they showed a larger infarct size and more serious neurological dysfunction after transient middle cerebral artery occlusion (tMCAO) treatment. In addition, inflammatory response and apoptosis were exacerbated in these processes. Furthermore, gain- and loss-of-function investigations in an in vitro model revealed that neuronal inflammation and apoptosis were aggravated by LAPTM5 knockdown but mitigated by its overexpression. Mechanistically, combined RNA sequencing and experimental verification showed that the apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK)/p38 pathway was mainly involved in the detrimental effects of LAPTM5 deficiency following I/R injury. Specifically, LAPTM5 directly interacts with ASK1, leading to decreased ASK1 N-terminal dimerization and the subsequent reduced activation of downstream JNK/p38 signaling. In conclusion, LAPTM5 was demonstrated to be a novel modulator in the pathophysiology of brain I/R injury, and targeting LAPTM5 may be feasible as a stroke treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA