Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Chem ; 70(7): 978-986, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38757262

RESUMEN

BACKGROUND: Abuse of fentanyl and its analogs is a major contributor to the opioid overdose epidemic in the United States, but detecting and quantifying trace amounts of such drugs remains a challenge without resorting to sophisticated mass spectrometry-based methods. METHODS: A sensitive immunoassay with a sub-picogram limit of detection for fentanyl and a wide range of fentanyl analogs has been developed, using a novel high-affinity antibody fused with NanoLuc, a small-size luciferase that can emit strong and stable luminescence. When used with human urine samples, the assay has a sub-picogram limit of detection for fentanyl, with results fully concordant with LC-MS. RESULTS: When applied to clinical samples, the novel chemiluminescence immunoassay can detect low positive fentanyl missed by routine screening immunoassays, with a limit of detection of 0.8 pg/mL in human urine. When applied to environmental samples, the assay can detect levels as low as 0.25 pg fentanyl per inch2 of environment surface. Assay turnaround time is less than 1 h, with inexpensive equipment and the potential for high-throughput automation or in-field screening. CONCLUSIONS: We have established a novel assay that may have broad applications in clinical, environmental, occupational, and forensic scenarios for detection of trace amounts of fentanyl and its analogs.


Asunto(s)
Fentanilo , Mediciones Luminiscentes , Fentanilo/orina , Fentanilo/análisis , Humanos , Inmunoensayo/métodos , Mediciones Luminiscentes/métodos , Límite de Detección , Detección de Abuso de Sustancias/métodos , Analgésicos Opioides/orina , Analgésicos Opioides/análisis
2.
Mol Cell ; 56(6): 808-18, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25435138

RESUMEN

The structure of broken DNA ends is a critical determinant of the pathway used for DNA double-strand break (DSB) repair. Here, we develop an approach involving the hairpin capture of DNA end structures (HCoDES), which elucidates chromosomal DNA end structures at single-nucleotide resolution. HCoDES defines structures of physiologic DSBs generated by the RAG endonuclease, as well as those generated by nucleases widely used for genome editing. Analysis of G1 phase cells deficient in H2AX or 53BP1 reveals DNA ends that are frequently resected to form long single-stranded overhangs that can be repaired by mutagenic pathways. In addition to 3' overhangs, many of these DNA ends unexpectedly form long 5' single-stranded overhangs. The divergence in DNA end structures resolved by HCoDES suggests that H2AX and 53BP1 may have distinct activities in end protection. Thus, the high-resolution end structures obtained by HCoDES identify features of DNA end processing during DSB repair.


Asunto(s)
Cromosomas Humanos/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Células Cultivadas , Roturas del ADN de Doble Cadena , Humanos
3.
J Immunol ; 199(3): 1131-1141, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637900

RESUMEN

T lineage commitment requires the coordination of key transcription factors (TFs) in multipotent progenitors that transition them away from other lineages and cement T cell identity. Two important TFs for the multipotent progenitors to T lineage transition are RUNX1 and ETS1, which bind cooperatively to composite sites throughout the genome, especially in regulatory elements for genes involved in T lymphopoiesis. Activation of the TCR ß (Tcrb) locus in committed thymocytes is a critical process for continued development of these cells, and is mediated by an enhancer, Eß, which harbors two RUNX-ETS composite sites. An outstanding issue in understanding T cell gene expression programs is whether RUNX1 and ETS1 have independent functions in enhancer activation that can be dissected from cooperative binding. We now show that RUNX1 is sufficient to activate the endogenous mouse Eß element and its neighboring 25 kb region by independently tethering this TF without coincidental ETS1 binding. Moreover, RUNX1 is sufficient for long-range promoter-Eß looping, nucleosome clearance, and robust transcription throughout the Tcrb recombination center, spanning both DßJß clusters. We also find that a RUNX1 domain, termed the negative regulatory domain for DNA binding, can compensate for the loss of ETS1 binding at adjacent sites. Thus, we have defined independent roles for RUNX1 in the activation of a T cell developmental enhancer, as well as its ability to mediate specific changes in chromatin landscapes that accompany long-range induction of recombination center promoters.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Animales , Sitios de Unión/genética , Cromatina/inmunología , Cromatina/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Genoma , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Proteína Proto-Oncogénica c-ets-1/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Recombinación Genética , Timocitos/inmunología , Timocitos/metabolismo
4.
Antibodies (Basel) ; 9(1)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121092

RESUMEN

Poliovirus (PV)-specific intestinal IgAs are important for cessation of PV shedding in the gastrointestinal tract following an acute infection with wild type or vaccine-derived PV strains. We sought to produce IgA monoclonal antibodies (mAbs) with PV neutralizing activity. We first performed de novo IgA discovery from primary human B cells using a hybridoma method that allows assessment of mAb binding and expression on the hybridoma surface: On-Cell mAb Screening (OCMS™). Six IgA1 mAbs were cloned by this method; three potently neutralized type 3 Sabin and wt PV strains. The hybridoma mAbs were heterogeneous, expressed in monomeric, dimeric, and aberrant forms. We also used recombinant methods to convert two high-potency anti-PV IgG mAbs into dimeric IgA1 and IgA2 mAbs. Isotype switching did not substantially change their neutralization activities. To purify the recombinant mAbs, Protein L binding was used, and one of the mAbs required a single amino acid substitution in its κ LC in order to enable protein L binding. Lastly, we used OCMS to assess IgA expression on the surface of hybridomas and transiently transfected, adherent cells. These studies have generated potent anti-PV IgA mAbs, for use in animal models, as well as additional tools for the discovery and production of human IgA mAbs.

5.
Cell Rep ; 18(12): 2918-2931, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28329684

RESUMEN

Alterations in distal regulatory elements that control gene expression underlie many diseases, including cancer. Epigenomic analyses of normal and diseased cells have produced correlative predictions for connections between dysregulated enhancers and target genes involved in pathogenesis. However, with few exceptions, these predicted cis-regulatory circuits remain untested. Here, we dissect cis-regulatory circuits that lead to overexpression of NEK6, a mitosis-associated kinase, in human B cell lymphoma. We find that only a minor subset of predicted enhancers is required for NEK6 expression. Indeed, an annotated super-enhancer is dispensable for NEK6 overexpression and for maintaining the architecture of a B cell-specific regulatory hub. A CTCF cluster serves as a chromatin and architectural boundary to block communication of the NEK6 regulatory hub with neighboring genes. Our findings emphasize that validation of predicted cis-regulatory circuits and super-enhancers is needed to prioritize transcriptional control elements as therapeutic targets.


Asunto(s)
Linfocitos B/metabolismo , Linfocitos B/patología , Transformación Celular Neoplásica/genética , Elementos de Facilitación Genéticos , Factor de Unión a CCCTC/metabolismo , Transformación Celular Neoplásica/patología , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Células Jurkat , Linfoma Folicular/genética , Linfoma Folicular/patología , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA